Omni-Reasoner-2B
Omni-Reasoner-2B is based on Qwen2VL and is designed for mathematical and content-based explanations. It excels in providing detailed reasoning about content and solving math problems with proper content formatting. This model integrates a conversational approach with visual and textual understanding to handle multi-modal tasks effectively.
Use it with Transformers
Before using, ensure that the required libraries are successfully installed in the environment.
!pip install gradio spaces transformers accelerate numpy requests torch torchvision qwen-vl-utils av ipython reportlab fpdf python-docx pillow huggingface_hub
ChemQwen With Inference Documentation, Before using, make sure that the hf_token
is provided in the login field in the code below.
Sample Inference with Doc
📒Demo: https://huggingface.co/prithivMLmods/Omni-Reasoner-2B/blob/main/Omni-R/omni-r.ipynb
# Authenticate with Hugging Face
from huggingface_hub import login
# Log in to Hugging Face using the provided token
hf_token = '----xxxxx----'
login(hf_token)
# Demo
import gradio as gr
import spaces
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from qwen_vl_utils import process_vision_info
import torch
from PIL import Image
import os
import uuid
import io
from threading import Thread
from reportlab.lib.pagesizes import A4
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.lib import colors
from reportlab.platypus import SimpleDocTemplate, Image as RLImage, Paragraph, Spacer
from reportlab.pdfbase import pdfmetrics
from reportlab.pdfbase.ttfonts import TTFont
import docx
from docx.enum.text import WD_ALIGN_PARAGRAPH
# Define model options
MODEL_OPTIONS = {
"Omni-Reasoner": "prithivMLmods/Omni-Reasoner-2B",
}
# Preload models and processors into CUDA
models = {}
processors = {}
for name, model_id in MODEL_OPTIONS.items():
print(f"Loading {name}...")
models[name] = Qwen2VLForConditionalGeneration.from_pretrained(
model_id,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
processors[name] = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
image_extensions = Image.registered_extensions()
def identify_and_save_blob(blob_path):
"""Identifies if the blob is an image and saves it."""
try:
with open(blob_path, 'rb') as file:
blob_content = file.read()
try:
Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image
extension = ".png" # Default to PNG for saving
media_type = "image"
except (IOError, SyntaxError):
raise ValueError("Unsupported media type. Please upload a valid image.")
filename = f"temp_{uuid.uuid4()}_media{extension}"
with open(filename, "wb") as f:
f.write(blob_content)
return filename, media_type
except FileNotFoundError:
raise ValueError(f"The file {blob_path} was not found.")
except Exception as e:
raise ValueError(f"An error occurred while processing the file: {e}")
@spaces.GPU
def qwen_inference(model_name, media_input, text_input=None):
"""Handles inference for the selected model."""
model = models[model_name]
processor = processors[model_name]
if isinstance(media_input, str):
media_path = media_input
if media_path.endswith(tuple([i for i in image_extensions.keys()])):
media_type = "image"
else:
try:
media_path, media_type = identify_and_save_blob(media_input)
except Exception as e:
raise ValueError("Unsupported media type. Please upload a valid image.")
messages = [
{
"role": "user",
"content": [
{
"type": media_type,
media_type: media_path
},
{"type": "text", "text": text_input},
],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, _ = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
padding=True,
return_tensors="pt",
).to("cuda")
streamer = TextIteratorStreamer(
processor.tokenizer, skip_prompt=True, skip_special_tokens=True
)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
# Remove <|im_end|> or similar tokens from the output
buffer = buffer.replace("<|im_end|>", "")
yield buffer
def format_plain_text(output_text):
"""Formats the output text as plain text without LaTeX delimiters."""
# Remove LaTeX delimiters and convert to plain text
plain_text = output_text.replace("\\(", "").replace("\\)", "").replace("\\[", "").replace("\\]", "")
return plain_text
def generate_document(media_path, output_text, file_format, font_size, line_spacing, alignment, image_size):
"""Generates a document with the input image and plain text output."""
plain_text = format_plain_text(output_text)
if file_format == "pdf":
return generate_pdf(media_path, plain_text, font_size, line_spacing, alignment, image_size)
elif file_format == "docx":
return generate_docx(media_path, plain_text, font_size, line_spacing, alignment, image_size)
def generate_pdf(media_path, plain_text, font_size, line_spacing, alignment, image_size):
"""Generates a PDF document."""
filename = f"output_{uuid.uuid4()}.pdf"
doc = SimpleDocTemplate(
filename,
pagesize=A4,
rightMargin=inch,
leftMargin=inch,
topMargin=inch,
bottomMargin=inch
)
styles = getSampleStyleSheet()
styles["Normal"].fontSize = int(font_size)
styles["Normal"].leading = int(font_size) * line_spacing
styles["Normal"].alignment = {
"Left": 0,
"Center": 1,
"Right": 2,
"Justified": 4
}[alignment]
story = []
# Add image with size adjustment
image_sizes = {
"Small": (200, 200),
"Medium": (400, 400),
"Large": (600, 600)
}
img = RLImage(media_path, width=image_sizes[image_size][0], height=image_sizes[image_size][1])
story.append(img)
story.append(Spacer(1, 12))
# Add plain text output
text = Paragraph(plain_text, styles["Normal"])
story.append(text)
doc.build(story)
return filename
def generate_docx(media_path, plain_text, font_size, line_spacing, alignment, image_size):
"""Generates a DOCX document."""
filename = f"output_{uuid.uuid4()}.docx"
doc = docx.Document()
# Add image with size adjustment
image_sizes = {
"Small": docx.shared.Inches(2),
"Medium": docx.shared.Inches(4),
"Large": docx.shared.Inches(6)
}
doc.add_picture(media_path, width=image_sizes[image_size])
doc.add_paragraph()
# Add plain text output
paragraph = doc.add_paragraph()
paragraph.paragraph_format.line_spacing = line_spacing
paragraph.paragraph_format.alignment = {
"Left": WD_ALIGN_PARAGRAPH.LEFT,
"Center": WD_ALIGN_PARAGRAPH.CENTER,
"Right": WD_ALIGN_PARAGRAPH.RIGHT,
"Justified": WD_ALIGN_PARAGRAPH.JUSTIFY
}[alignment]
run = paragraph.add_run(plain_text)
run.font.size = docx.shared.Pt(int(font_size))
doc.save(filename)
return filename
# CSS for output styling
css = """
#output {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
.submit-btn {
background-color: #cf3434 !important;
color: white !important;
}
.submit-btn:hover {
background-color: #ff2323 !important;
}
.download-btn {
background-color: #35a6d6 !important;
color: white !important;
}
.download-btn:hover {
background-color: #22bcff !important;
}
"""
# Gradio app setup
with gr.Blocks(css=css) as demo:
gr.Markdown("# ChemQwen Chemical Identifier")
with gr.Tab(label="Image Input"):
with gr.Row():
with gr.Column():
model_choice = gr.Dropdown(
label="Model Selection",
choices=list(MODEL_OPTIONS.keys()),
value="Omni-Reasoner"
)
input_media = gr.File(
label="Upload Image", type="filepath"
)
text_input = gr.Textbox(label="Question", placeholder="Ask a question about the image...")
submit_btn = gr.Button(value="Submit", elem_classes="submit-btn")
with gr.Column():
output_text = gr.Textbox(label="Output Text", lines=10)
plain_text_output = gr.Textbox(label="Standardized Plain Text", lines=10)
submit_btn.click(
qwen_inference, [model_choice, input_media, text_input], [output_text]
).then(
lambda output_text: format_plain_text(output_text), [output_text], [plain_text_output]
)
# Add examples directly usable by clicking
with gr.Row():
with gr.Column():
line_spacing = gr.Dropdown(
choices=[0.5, 1.0, 1.15, 1.5, 2.0, 2.5, 3.0],
value=1.5,
label="Line Spacing"
)
font_size = gr.Dropdown(
choices=["8", "10", "12", "14", "16", "18", "20", "22", "24"],
value="18",
label="Font Size"
)
alignment = gr.Dropdown(
choices=["Left", "Center", "Right", "Justified"],
value="Justified",
label="Text Alignment"
)
image_size = gr.Dropdown(
choices=["Small", "Medium", "Large"],
value="Small",
label="Image Size"
)
file_format = gr.Radio(["pdf", "docx"], label="File Format", value="pdf")
get_document_btn = gr.Button(value="Get Document", elem_classes="download-btn")
get_document_btn.click(
generate_document, [input_media, output_text, file_format, font_size, line_spacing, alignment, image_size], gr.File(label="Download Document")
)
demo.launch(debug=True)
Key Enhancements
Advanced Reasoning Capabilities:
- Enhanced ability to perform long-form reasoning for complex mathematical and content-based queries.
- Supports detailed step-by-step explanations for problem-solving and content formatting.
Multi-Modal Integration:
- Combines visual and textual understanding to interpret and analyze diverse input formats (images, text, and mathematical expressions).
Conversational Workflow:
- Offers a natural conversational interface for interactive problem-solving and explanations.
Content Formatting:
- Improves content presentation with structured formatting for better readability and understanding.
Intended Use
Educational Assistance:
- Ideal for students and educators for solving mathematical problems, creating structured explanations, and formatting educational content.
Research Support:
- Assists researchers in generating in-depth explanations and interpreting complex visual and textual data.
Content Creation:
- Enhances the generation of well-formatted documents, reports, and presentations.
General Purpose Assistance:
- Useful for applications requiring long-form reasoning and conversational AI in domains like tutoring, customer support, and technical writing.
Limitations
Domain-Specific Expertise:
- May struggle with niche or highly specialized topics outside its training domain.
Error in Long-Chain Reasoning:
- In rare cases, it might generate incorrect or inconsistent solutions for highly complex problems.
Visual Data Limitations:
- Performance may depend on the quality and clarity of visual inputs (e.g., low-resolution images may reduce accuracy).
Formatting Constraints:
- While effective, complex or heavily customized formatting tasks may require manual adjustments.
Dependence on Context:
- The model relies on well-structured input to produce accurate and coherent outputs; ambiguous or incomplete prompts may lead to suboptimal results.
- Downloads last month
- 2