Qwen3 Moderate Behavioral Flexibility
Collection
moderately abliterated and improved context awareness and moderate behavioral flexibility variant of Qwen3.
β’
6 items
β’
Updated
Qwen3-1.7B-ft-bf16 is a fine-tuned, moderately abliterated variant of the Qwen3-1.7B model. Built upon the robust Qwen3 architecture, this version emphasizes improved context awareness and moderate behavioral flexibility, while maintaining high standards in reasoning, instruction-following, and multilingual performance. It is designed to perform consistently across general-purpose dialogue, technical reasoning, creative writing, and multilingual tasks.
pip install transformers==4.51.3
pip install huggingface_hub[hf_xet]
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "prithivMLmods/Qwen3-1.7B-ft-bf16"
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
# Define prompt and apply chat template
prompt = "Explain why the sky appears blue during the day and red at sunset."
messages = [{"role": "user", "content": prompt}]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True
)
# Tokenize input
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# Generate response
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# Optional: Separate thinking content
try:
index = len(output_ids) - output_ids[::-1].index(151668) # token ID for </think>
except ValueError:
index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content)
print("content:", content)
temperature=0.6
, top_p=0.95
, top_k=20
, min_p=0.0
temperature=0.7
, top_p=0.8
, top_k=20
, min_p=0.0
32768
38912
"Please reason step by step, and put your final answer within \boxed{}."
{"answer": "C"}