|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- drveronika/x_fake_profile_detection |
|
language: |
|
- en |
|
base_model: |
|
- google/siglip2-base-patch16-224 |
|
pipeline_tag: image-classification |
|
library_name: transformers |
|
tags: |
|
- bot-detection |
|
- x |
|
- twitter |
|
- experimental |
|
--- |
|
|
|
 |
|
|
|
# **x-bot-profile-detection** |
|
|
|
> **x-bot-profile-detection** is a SigLIP2-based classification model designed to detect **profile authenticity types on social media platforms** (such as X/Twitter). It categorizes a profile image into four classes: **bot**, **cyborg**, **real**, or **verified**. Built on `google/siglip2-base-patch16-224`, the model leverages advanced vision-language pretraining for robust image classification. |
|
|
|
```py |
|
Classification Report: |
|
precision recall f1-score support |
|
|
|
bot 0.9912 0.9960 0.9936 2500 |
|
cyborg 0.9940 0.9880 0.9910 2500 |
|
real 0.8634 0.9936 0.9239 2500 |
|
verified 0.9948 0.8460 0.9144 2500 |
|
|
|
accuracy 0.9559 10000 |
|
macro avg 0.9609 0.9559 0.9557 10000 |
|
weighted avg 0.9609 0.9559 0.9557 10000 |
|
``` |
|
|
|
 |
|
|
|
--- |
|
|
|
## **Label Classes** |
|
|
|
The model predicts one of the following profile types: |
|
|
|
``` |
|
0: bot → Automated accounts |
|
1: cyborg → Partially automated or suspiciously mixed behavior |
|
2: real → Genuine human users |
|
3: verified → Verified accounts or official profiles |
|
``` |
|
|
|
--- |
|
|
|
## **Installation** |
|
|
|
```bash |
|
pip install transformers torch pillow gradio |
|
``` |
|
|
|
--- |
|
|
|
## **Example Inference Code** |
|
|
|
```python |
|
import gradio as gr |
|
from transformers import AutoImageProcessor, SiglipForImageClassification |
|
from PIL import Image |
|
import torch |
|
|
|
# Load model and processor |
|
model_name = "prithivMLmods/x-bot-profile-detection" |
|
model = SiglipForImageClassification.from_pretrained(model_name) |
|
processor = AutoImageProcessor.from_pretrained(model_name) |
|
|
|
# Define class mapping |
|
id2label = { |
|
"0": "bot", |
|
"1": "cyborg", |
|
"2": "real", |
|
"3": "verified" |
|
} |
|
|
|
def detect_profile_type(image): |
|
image = Image.fromarray(image).convert("RGB") |
|
inputs = processor(images=image, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() |
|
|
|
prediction = { |
|
id2label[str(i)]: round(probs[i], 3) for i in range(len(probs)) |
|
} |
|
|
|
return prediction |
|
|
|
# Create Gradio UI |
|
iface = gr.Interface( |
|
fn=detect_profile_type, |
|
inputs=gr.Image(type="numpy"), |
|
outputs=gr.Label(num_top_classes=4, label="Predicted Profile Type"), |
|
title="x-bot-profile-detection", |
|
description="Upload a social media profile picture to classify it as Bot, Cyborg, Real, or Verified using a SigLIP2 model." |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
``` |
|
|
|
--- |
|
|
|
## **Use Cases** |
|
|
|
* Social media moderation and automation detection |
|
* Anomaly detection in public discourse |
|
* Botnet analysis and influence operation research |
|
* Platform integrity and trust verification |