pvduy's picture
Create README.md
ebdc7db
```python
class GPTRewardModel(nn.Module):
def __init__(self):
super().__init__()
model = AutoModelForCausalLM.from_pretrained("pvduy/vicuna-13b-v1.1")
self.config = model.config
self.config.n_embd = self.config.hidden_size if hasattr(self.config, "hidden_size") else self.config.n_embd
self.transformer = model.model
self.v_head = nn.Linear(self.config.n_embd, 1, bias=False)
self.tokenizer = AutoTokenizer.from_pretrained("pvduy/vicuna-13b-v1.1")
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
self.tokenizer.padding_side = "right"
self.PAD_ID = self.tokenizer.pad_token_id
def forward(
self,
input_ids=None,
past_key_values=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
mc_token_ids=None,
labels=None,
return_dict=False,
output_attentions=False,
output_hidden_states=False,
):
loss = None
transformer_outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
)
hidden_states = transformer_outputs[0]
rewards = self.v_head(hidden_states).squeeze(-1)
ends = torch.argmax((input_ids == self.PAD_ID).type(torch.float32), dim=1).view(-1, 1)
rewards = torch.gather(rewards, 1, ends)
return rewards
```