File size: 5,424 Bytes
11ca438 f38ad3d 11ca438 a7bb628 800c265 fa9082a 800c265 a7bb628 39b90e8 a7bb628 28f465c a7bb628 39b90e8 a7bb628 be21cdb a7bb628 be21cdb a7bb628 be21cdb a7bb628 d682ce6 a7bb628 36880bf a7bb628 d682ce6 a7bb628 d682ce6 36880bf d682ce6 a7bb628 d682ce6 a7bb628 d682ce6 a7bb628 36880bf d682ce6 a7bb628 d682ce6 a7bb628 f38ad3d a7bb628 f38ad3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
---
library_name: transformers
tags:
- torchao
license: mit
---
[Phi4-mini](https://huggingface.co/microsoft/Phi-4-mini-instruct) model quantized with [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao) float8 dynamic activation and float8 weight quantization (per row granularity), by PyTorch team.
# Installation
```
pip install transformers
pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126
```
# Quantization Recipe
We used following code to get the quantized model:
```
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
model_id = "microsoft/Phi-4-mini-instruct"
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, PerRow
quant_config = Float8DynamicActivationFloat8WeightConfig(granularity=PerRow())
quantization_config = TorchAoConfig(quant_type=quant_config)
quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", quantization_config=quantization_config)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Push to hub
USER_ID = "YOUR_USER_ID"
save_to = f"{USER_ID}/{model_id}-float8dq"
quantized_model.push_to_hub(save_to, safe_serialization=False)
tokenizer.push_to_hub(save_to)
# Manual Testing
prompt = "Hey, are you conscious? Can you talk to me?"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
generated_ids = quantized_model.generate(**inputs, max_new_tokens=128)
output_text = tokenizer.batch_decode(
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
# Local Benchmark
import torch.utils.benchmark as benchmark
from torchao.utils import benchmark_model
import torchao
def benchmark_fn(f, *args, **kwargs):
# Manual warmup
for _ in range(2):
f(*args, **kwargs)
t0 = benchmark.Timer(
stmt="f(*args, **kwargs)",
globals={"args": args, "kwargs": kwargs, "f": f},
num_threads=torch.get_num_threads(),
)
return f"{(t0.blocked_autorange().mean):.3f}"
torchao.quantization.utils.recommended_inductor_config_setter()
quantized_model = torch.compile(quantized_model, mode="max-autotune")
print(f"{save_to} model:", benchmark_fn(quantized_model.generate, **inputs, max_new_tokens=128))
```
# Model Quality
We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model.
## Installing the nightly version to get most recent updates
```
pip install git+https://github.com/EleutherAI/lm-evaluation-harness
```
## baseline
```
lm_eval --model hf --model_args pretrained=microsoft/Phi-4-mini-instruct --tasks hellaswag --device cuda:0 --batch_size 8
```
## float8dq
```
lm_eval --model hf --model_args pretrained=jerryzh168/phi4-mini-float8dq --tasks hellaswag --device cuda:0 --batch_size 8
```
`TODO: more complete eval results`
| Benchmark | | |
|----------------------------------|-------------|-------------------|
| | Phi-4 mini-Ins | phi4-mini-float8dq |
| **Popular aggregated benchmark** | | |
| **Reasoning** | | |
| HellaSwag | 54.57 | 54.55 |
| **Multilingual** | | |
| **Math** | | |
| **Overall** | **TODO** | **TODO** |
# Model Performance
## Download vllm source code and install vllm
```
git clone [email protected]:vllm-project/vllm.git
VLLM_USE_PRECOMPILED=1 pip install .
```
## Download dataset
Download sharegpt dataset: `wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json`
Other datasets can be found in: https://github.com/vllm-project/vllm/tree/main/benchmarks
## benchmark_latency
Run the following under `vllm` source code root folder:
### baseline
```
python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model microsoft/Phi-4-mini-instruct --batch-size 1
```
### float8dq
```
python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model jerryzh168/phi4-mini-float8dq --batch-size 1
```
## benchmark_serving
We also benchmarked the throughput in a serving environment.
Run the following under `vllm` source code root folder:
### baseline
Server:
```
vllm serve microsoft/Phi-4-mini-instruct --tokenizer microsoft/Phi-4-mini-instruct -O3
```
Client:
```
python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer microsoft/Phi-4-mini-instruct --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model microsoft/Phi-4-mini-instruct --num-prompts 1
```
### float8dq
Server:
```
vllm serve jerryzh168/phi4-mini-float8dq --tokenizer microsoft/Phi-4-mini-instruct -O3
```
Client:
```
python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer microsoft/Phi-4-mini-instruct --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model jerryzh168/phi4-mini-float8dq --num-prompts 1
```
# Serving with vllm
We can use the same command we used in serving benchmarks to serve the model with vllm
```
vllm serve jerryzh168/phi4-mini-float8dq --tokenizer microsoft/Phi-4-mini-instruct -O3
``` |