|
--- |
|
library_name: transformers |
|
tags: |
|
- torchao |
|
- phi |
|
- phi4 |
|
- nlp |
|
- code |
|
- math |
|
- chat |
|
- conversational |
|
license: mit |
|
language: |
|
- multilingual |
|
base_model: |
|
- microsoft/Phi-4-mini-instruct |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
[Phi4-mini](https://huggingface.co/microsoft/Phi-4-mini-instruct) model quantized with [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao) float8 dynamic activation and float8 weight quantization (per row granularity), by PyTorch team. Use it directly, or serve using [vLLM](https://docs.vllm.ai/en/latest/) with 36% VRAM reduction, 15-20% speedup and little to no accuracy impact on H100. |
|
|
|
# Inference with vLLM |
|
Need to install vllm nightly to get some recent changes: |
|
``` |
|
pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly |
|
``` |
|
|
|
## Code Example |
|
```Py |
|
from vllm import LLM, SamplingParams |
|
|
|
# Sample prompts. |
|
prompts = [ |
|
"Hello, my name is", |
|
"The president of the United States is", |
|
"The capital of France is", |
|
"The future of AI is", |
|
] |
|
# Create a sampling params object. |
|
sampling_params = SamplingParams(temperature=0.8, top_p=0.95) |
|
|
|
|
|
if __name__ == '__main__': |
|
# Create an LLM. |
|
llm = LLM(model="pytorch/Phi-4-mini-instruct-float8dq") |
|
# Generate texts from the prompts. |
|
# The output is a list of RequestOutput objects |
|
# that contain the prompt, generated text, and other information. |
|
outputs = llm.generate(prompts, sampling_params) |
|
# Print the outputs. |
|
print("\nGenerated Outputs:\n" + "-" * 60) |
|
for output in outputs: |
|
prompt = output.prompt |
|
generated_text = output.outputs[0].text |
|
print(f"Prompt: {prompt!r}") |
|
print(f"Output: {generated_text!r}") |
|
print("-" * 60) |
|
``` |
|
|
|
Note: please use `VLLM_DISABLE_COMPILE_CACHE=1` to disable compile cache when running this code, e.g. `VLLM_DISABLE_COMPILE_CACHE=1 python example.py`, since there are some issues with the composability of compile in vLLM and torchao, |
|
this is expected be resolved in pytorch 2.8. |
|
|
|
## Serving |
|
Then we can serve with the following command: |
|
```Shell |
|
vllm serve pytorch/Phi-4-mini-instruct-float8dq --tokenizer microsoft/Phi-4-mini-instruct -O3 |
|
``` |
|
|
|
# Inference with Transformers |
|
|
|
Install the required packages: |
|
```Shell |
|
pip install git+https://github.com/huggingface/transformers@main |
|
pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126 |
|
pip install torch |
|
pip install accelerate |
|
``` |
|
|
|
Example: |
|
```Py |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
|
|
torch.random.manual_seed(0) |
|
|
|
model_path = "pytorch/Phi-4-mini-instruct-float8dq" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
device_map="auto", |
|
torch_dtype="auto", |
|
trust_remote_code=True, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are a helpful AI assistant."}, |
|
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"}, |
|
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."}, |
|
{"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"}, |
|
] |
|
|
|
pipe = pipeline( |
|
"text-generation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
) |
|
|
|
generation_args = { |
|
"max_new_tokens": 500, |
|
"return_full_text": False, |
|
"temperature": 0.0, |
|
"do_sample": False, |
|
} |
|
|
|
output = pipe(messages, **generation_args) |
|
print(output[0]['generated_text']) |
|
``` |
|
|
|
# Quantization Recipe |
|
|
|
Install the required packages: |
|
|
|
```Shell |
|
pip install git+https://github.com/huggingface/transformers@main |
|
pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126 |
|
pip install torch |
|
pip install accelerate |
|
``` |
|
|
|
Use the following code to get the quantized model: |
|
|
|
```Py |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig |
|
|
|
model_id = "microsoft/Phi-4-mini-instruct" |
|
|
|
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, PerRow |
|
quant_config = Float8DynamicActivationFloat8WeightConfig(granularity=PerRow()) |
|
quantization_config = TorchAoConfig(quant_type=quant_config) |
|
quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, quantization_config=quantization_config) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
# Push to hub |
|
USER_ID = "YOUR_USER_ID" |
|
MODEL_NAME = model_id.split("/")[-1] |
|
save_to = f"{USER_ID}/{MODEL_NAME}-float8dq" |
|
quantized_model.push_to_hub(save_to, safe_serialization=False) |
|
tokenizer.push_to_hub(save_to) |
|
|
|
# Manual Testing |
|
prompt = "Hey, are you conscious? Can you talk to me?" |
|
messages = [ |
|
{ |
|
"role": "system", |
|
"content": "", |
|
}, |
|
{"role": "user", "content": prompt}, |
|
] |
|
templated_prompt = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True, |
|
) |
|
print("Prompt:", prompt) |
|
print("Templated prompt:", templated_prompt) |
|
inputs = tokenizer( |
|
templated_prompt, |
|
return_tensors="pt", |
|
).to("cuda") |
|
generated_ids = quantized_model.generate(**inputs, max_new_tokens=128) |
|
output_text = tokenizer.batch_decode( |
|
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
print("Response:", output_text[0][len(prompt):]) |
|
``` |
|
|
|
# Model Quality |
|
We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model. |
|
Need to install lm-eval from source: |
|
https://github.com/EleutherAI/lm-evaluation-harness#install |
|
|
|
|
|
## baseline |
|
```Shell |
|
lm_eval --model hf --model_args pretrained=microsoft/Phi-4-mini-instruct --tasks hellaswag --device cuda:0 --batch_size 8 |
|
``` |
|
|
|
## float8 dynamic activation and float8 weight quantization (float8dq) |
|
```Shell |
|
lm_eval --model hf --model_args pretrained=pytorch/Phi-4-mini-instruct-float8dq --tasks hellaswag --device cuda:0 --batch_size 8 |
|
``` |
|
|
|
| Benchmark | | | |
|
|----------------------------------|----------------|---------------------| |
|
| | Phi-4 mini-Ins | phi4-mini-float8dq | |
|
| **Popular aggregated benchmark** | | | |
|
| mmlu (0-shot) | 66.73 | Pending | |
|
| mmlu_pro (5-shot) | 46.43 | Pending | |
|
| **Reasoning** | | | |
|
| arc_challenge (0-shot) | 56.91 | 56.66 | |
|
| gpqa_main_zeroshot | 30.13 | 29.46 | |
|
| HellaSwag | 54.57 | 54.55 | |
|
| openbookqa | 33.00 | 33.60 | |
|
| piqa (0-shot) | 77.64 | 77.48 | |
|
| social_iqa | 49.59 | 49.28 | |
|
| truthfulqa_mc2 (0-shot) | 48.39 | 48.09 | |
|
| winogrande (0-shot) | 71.11 | 72.77 | |
|
| **Multilingual** | | | |
|
| mgsm_en_cot_en | 60.8 | 60.0 | |
|
| **Math** | | | |
|
| gsm8k (5-shot) | 81.88 | 80.89 | |
|
| mathqa (0-shot) | 42.31 | 42.51 | |
|
| **Overall** | **55.35** | **Pending** | |
|
|
|
# Peak Memory Usage |
|
|
|
|
|
## Results |
|
|
|
| Benchmark | | | |
|
|------------------|----------------|--------------------------------| |
|
| | Phi-4 mini-Ins | Phi-4-mini-instruct-float8dq | |
|
| Peak Memory (GB) | 8.91 | 5.70 (36% reduction) | |
|
|
|
|
|
## Benchmark Peak Memory |
|
|
|
We can use the following code to get a sense of peak memory usage during inference: |
|
|
|
|
|
```Py |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig |
|
|
|
# use "microsoft/Phi-4-mini-instruct" or "pytorch/Phi-4-mini-instruct-float8dq" |
|
model_id = "microsoft/Phi-4-mini-instruct" |
|
quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
prompt = "Hey, are you conscious? Can you talk to me?" |
|
messages = [ |
|
{ |
|
"role": "system", |
|
"content": "", |
|
}, |
|
{"role": "user", "content": prompt}, |
|
] |
|
templated_prompt = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True, |
|
) |
|
print("Prompt:", prompt) |
|
print("Templated prompt:", templated_prompt) |
|
inputs = tokenizer( |
|
templated_prompt, |
|
return_tensors="pt", |
|
).to("cuda") |
|
generated_ids = quantized_model.generate(**inputs, max_new_tokens=128) |
|
output_text = tokenizer.batch_decode( |
|
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
print("Response:", output_text[0][len(prompt):]) |
|
|
|
mem = torch.cuda.max_memory_reserved() / 1e9 |
|
print(f"Peak Memory Usage: {mem:.02f} GB") |
|
``` |
|
|
|
# Model Performance |
|
|
|
## Results (H100 machine) |
|
| Benchmark | | | |
|
|----------------------------------|----------------|--------------------------| |
|
| | Phi-4 mini-Ins | phi4-mini-float8dq | |
|
| latency (batch_size=1) | 1.64s | 1.41s (16% speedup) | |
|
| latency (batch_size=128) | 3.1s | 2.72s (14% speedup) | |
|
| serving (num_prompts=1) | 1.35 req/s | 1.57 req/s (16% speedup) | |
|
| serving (num_prompts=1000) | 66.68 req/s | 80.53 req/s (21% speedup)| |
|
|
|
Note the result of latency (benchmark_latency) is in seconds, and serving (benchmark_serving) is in number of requests per second. |
|
|
|
## Setup |
|
Need to install vllm nightly to get some recent changes |
|
```Shell |
|
pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly |
|
``` |
|
|
|
Get vllm source code: |
|
```Shell |
|
git clone [email protected]:vllm-project/vllm.git |
|
``` |
|
|
|
Run the benchmarks under `vllm` root folder: |
|
|
|
## benchmark_latency |
|
|
|
### baseline |
|
```Shell |
|
python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model microsoft/Phi-4-mini-instruct --batch-size 1 |
|
``` |
|
|
|
### float8dq |
|
```Shell |
|
python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model pytorch/Phi-4-mini-instruct-float8dq --batch-size 1 |
|
``` |
|
|
|
## benchmark_serving |
|
|
|
We benchmarked the throughput in a serving environment. |
|
|
|
Download sharegpt dataset: `wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json` |
|
Other datasets can be found in: https://github.com/vllm-project/vllm/tree/main/benchmarks |
|
### baseline |
|
Server: |
|
```Shell |
|
vllm serve microsoft/Phi-4-mini-instruct --tokenizer microsoft/Phi-4-mini-instruct -O3 |
|
``` |
|
|
|
Client: |
|
```Shell |
|
python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer microsoft/Phi-4-mini-instruct --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model microsoft/Phi-4-mini-instruct --num-prompts 1 |
|
``` |
|
|
|
### float8dq |
|
Server: |
|
```Shell |
|
vllm serve pytorch/Phi-4-mini-instruct-float8dq --tokenizer microsoft/Phi-4-mini-instruct -O3 |
|
``` |
|
|
|
Client: |
|
```Shell |
|
python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer microsoft/Phi-4-mini-instruct --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model jerryzh168/phi4-mini-float8dq --num-prompts 1 |
|
``` |
|
|
|
# Disclaimer |
|
PyTorch has not performed safety evaluations or red teamed the quantized models. Performance characteristics, outputs, and behaviors may differ from the original models. Users are solely responsible for selecting appropriate use cases, evaluating and mitigating for accuracy, safety, and fairness, ensuring security, and complying with all applicable laws and regulations. |
|
|
|
Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the licenses the models are released under, including any limitations of liability or disclaimers of warranties provided therein. |