Qwen3-32B model quantized with torchao float8 dynamic activation and float8 weight quantization (per row granularity), by PyTorch team. Use it directly, or serve using vLLM with 47% VRAM reduction, around 1.5x speedup and little to no accuracy impact on H100.

Inference with vLLM

# Server
VLLM_DISABLE_COMPILE_CACHE=1 vllm serve pytorch/Qwen3-32B-float8dq --tokenizer Qwen/Qwen3-32B -O3
# Client
curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{
  "model": "pytorch/Qwen3-32B-float8dq",
  "messages": [
    {"role": "user", "content": "Give me a short introduction to large language models."}
  ],
  "temperature": 0.6,
  "top_p": 0.95,
  "top_k": 20,
  "max_tokens": 32768
}'

Inference with transformers

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "pytorch/Qwen3-32B-float8dq"

# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)

# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
    enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

# conduct text completion
generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() 

# parsing thinking content
try:
    # rindex finding 151668 (</think>)
    index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
    index = 0

thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")

print("thinking content:", thinking_content)
print("content:", content)

Quantization Recipe

Install the required packages:

pip install git+https://github.com/huggingface/transformers@main
pip install torchao
pip install torch
pip install accelerate

Use the following code to get the float8 model using torchao library:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig

model_id = "Qwen/Qwen3-32B"
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, PerRow
quant_config = Float8DynamicActivationFloat8WeightConfig(granularity=PerRow())
quantization_config = TorchAoConfig(quant_type=quant_config)
quantized_model = AutoModelForCausalLM.from_pretrained(
    model_id, 
    device_map="auto", 
    torch_dtype=torch.bfloat16, 
    quantization_config=quantization_config,
)
tokenizer = AutoTokenizer.from_pretrained(model_id)

Optionally, upload to your HF hub

USER_ID = "YOUR_USER_ID"
MODEL_NAME = model_id.split("/")[-1]
save_to = f"{USER_ID}/{MODEL_NAME}-float8dq"
quantized_model.push_to_hub(save_to, safe_serialization=False)
tokenizer.push_to_hub(save_to)

Model Quality

We rely on lm-evaluation-harness to evaluate the quality of the quantized model.

Benchmark
Qwen3-32B Qwen3-32B-float8dq
General
mmlu 80.71 80.67
bbh 37.49 38.01
Multilingual
mgsm_en_cot_es 58.4 52.0
Math
gpqa_main_zeroshot 41.96 42.63
Overall 54.64 53.33
Reproduce Model Quality Results

Need to install lm-eval from source: https://github.com/EleutherAI/lm-evaluation-harness#install

baseline

lm_eval --model hf --model_args pretrained=Qwen/Qwen3-32B --tasks mmlu --device cuda:0 --batch_size 8

float8 dynamic quantization (float8dq)

export MODEL=pytorch/Qwen3-32B-float8dq
# or
# export MODEL=Qwen/Qwen3-32B
lm_eval --model hf --model_args pretrained=$MODEL --tasks mmlu --device cuda:0 --batch_size 8

Memory Usage

Memory (tested on H100)
Qwen3-32B Qwen3-32B-float8dq
Peak Memory 65.72 GB 34.54 GB (47.44% reduction)
Reproduce Peak Memory Usage Results

Code

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "Qwen/Qwen3-32B" # pytorch/Qwen3-32B-float8dq

# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)

torch.cuda.reset_peak_memory_stats()

# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
    enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

# conduct text completion
generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() 

# parsing thinking content
try:
    # rindex finding 151668 (</think>)
    index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
    index = 0

thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")

print("thinking content:", thinking_content)
print("content:", content)


mem = torch.cuda.max_memory_reserved() / 1e9
print(f"Peak Memory Usage: {mem:.02f} GB")

Model Performance

Benchmark (Tested on H100)
Qwen3-32B Qwen3-32B-float8dq
latency (batch_size=1) 9.1s 5.77s (1.58x speedup)
latency (batch_size=128) 12.45s 8.40s (1.48x speedup)
Reproduce latency benchmarks

1. Setup

git clone [email protected]:vllm-project/vllm.git
cd vllm
VLLM_USE_PRECOMPILED=1 pip install --editable .

2. Latency benchmarking

export MODEL=Qwen/Qwen3-32B # or pytorch/Qwen3-32B-float8dq
VLLM_DISABLE_COMPILE_CACHE=1 python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model $MODEL --batch-size 1

Disclaimer

PyTorch has not performed safety evaluations or red teamed the quantized models. Performance characteristics, outputs, and behaviors may differ from the original models. Users are solely responsible for selecting appropriate use cases, evaluating and mitigating for accuracy, safety, and fairness, ensuring security, and complying with all applicable laws and regulations.

Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the licenses the models are released under, including any limitations of liability or disclaimers of warranties provided therein.

Downloads last month
126
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for pytorch/Qwen3-32B-float8dq

Base model

Qwen/Qwen3-32B
Quantized
(88)
this model

Collection including pytorch/Qwen3-32B-float8dq