Uploaded model
- Developed by: qcube
- License: apache-2.0
- Finetuned from model : llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
Sample use
以下は、elyza-tasks-100-TV_0.jsonl の回答のためのコードです。
from unsloth import FastLanguageModel
import torch
import json
HF_TOKEN = "your-token"
model_name = "qcube/llm-jp-3-13b-finetune6"
max_seq_length = 2048
dtype = None
load_in_4bit = True
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_name,
max_seq_length=max_seq_length,
dtype=dtype,
load_in_4bit=load_in_4bit,
token=HF_TOKEN,
)
FastLanguageModel.for_inference(model)
# データセットの読み込み。
# omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
from tqdm import tqdm
# 推論
results = []
for dt in tqdm(datasets):
input = dt["input"]
prompt = f"""### 指示\n{input}\n### 回答\n"""
inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=512,
use_cache=True,
do_sample=False,
repetition_penalty=1.2,
)
prediction = tokenizer.decode(
outputs[0],
skip_special_tokens=True,
).split(
"\n### 回答"
)[-1]
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
with open(f"./llm-jp-3-13b-finetune6-outputs-3.jsonl", "w", encoding="utf-8") as f:
for result in results:
json.dump(result, f, ensure_ascii=False)
f.write("\n")
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for qcube/llm-jp-3-13b-finetune6
Base model
llm-jp/llm-jp-3-13b