spaceom-7b

This model is a fine-tuned version of UCSC-VLAA/VLAA-Thinker-Qwen2.5VL-7B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6370

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
0.6712 0.2384 500 0.6764
0.6865 0.4768 1000 0.6627
0.6501 0.7153 1500 0.6551
0.6606 0.9537 2000 0.6509
0.641 1.1917 2500 0.6474
0.6439 1.4301 3000 0.6450
0.6336 1.6685 3500 0.6425
0.6328 1.9070 4000 0.6406
0.611 2.1450 4500 0.6409
0.6238 2.3834 5000 0.6393
0.6261 2.6218 5500 0.6386
0.6159 2.8602 6000 0.6370

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
12
Safetensors
Model size
8.29B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for qhz991029/spaceom-7b

Adapter
(1)
this model