See axolotl config
axolotl version: 0.5.0
base_model: Qwen/Qwen2.5-Math-7B
plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
strict: false
chat_template: chatml
datasets:
  - path: arcee-ai/orcamath_evol_85k
    type: chat_template
    split: train
    field_messages: conversations
    message_field_role: from
    message_field_content: value
  - path: allenai/tulu-3-sft-personas-math
    type: chat_template
    split: train[:10%]
    field_messages: messages
    message_field_role: role
    message_field_content: content
  - path: allenai/tulu-3-sft-personas-algebra
    type: chat_template
    split: train
    field_messages: messages
    message_field_role: role
    message_field_content: content
dataset_prepared_path: ./axolotl-datasets/math-evol-prepared
val_set_size: 0.02
output_dir: ./axolotl-outputs/Arcee-7B-Mathy-7B-6e
sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project: "Arcee-Mathy-7B"
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 4
num_epochs: 6
optimizer: adamw_torch_fused #adamw_torch_fused # if you have OOM errors you can use adamw_8bit
lr_scheduler: linear
learning_rate: 5e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: true
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 50
evals_per_epoch: 1
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.0
special_tokens:
  pad_token: <|endoftext|>
  eos_token: <|im_end|>
axolotl-outputs/Arcee-7B-Mathy-7B-6e
This model is a fine-tuned version of Qwen/Qwen2.5-Math-7B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5608
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
 - train_batch_size: 4
 - eval_batch_size: 4
 - seed: 42
 - distributed_type: multi-GPU
 - num_devices: 8
 - gradient_accumulation_steps: 8
 - total_train_batch_size: 256
 - total_eval_batch_size: 32
 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
 - lr_scheduler_type: linear
 - lr_scheduler_warmup_steps: 50
 - num_epochs: 6
 
Training results
| Training Loss | Epoch | Step | Validation Loss | 
|---|---|---|---|
| 0.4101 | 0.0106 | 1 | 1.6490 | 
| 0.2319 | 0.9987 | 94 | 1.5007 | 
| 0.2234 | 1.9960 | 188 | 1.5070 | 
| 0.205 | 2.9920 | 282 | 1.5350 | 
| 0.1979 | 3.9894 | 376 | 1.5456 | 
| 0.1866 | 4.9867 | 470 | 1.5547 | 
| 0.1926 | 5.9827 | 564 | 1.5608 | 
Framework versions
- Transformers 4.46.1
 - Pytorch 2.3.1+cu121
 - Datasets 3.0.1
 - Tokenizers 0.20.3
 
- Downloads last month
 - 1