AOT-GAN: Optimized for Qualcomm Devices
AOT-GAN is a machine learning model that allows to erase and in-paint part of given input image.
This is based on the implementation of AOT-GAN found here. This repository contains pre-exported model files optimized for Qualcomm® devices. You can use the Qualcomm® AI Hub Models library to export with custom configurations. More details on model performance across various devices, can be found here.
Qualcomm AI Hub Models uses Qualcomm AI Hub Workbench to compile, profile, and evaluate this model. Sign up to run these models on a hosted Qualcomm® device.
Getting Started
There are two ways to deploy this model on your device:
Option 1: Download Pre-Exported Models
Below are pre-exported model assets ready for deployment.
| Runtime | Precision | Chipset | SDK Versions | Download |
|---|---|---|---|---|
| ONNX | float | Universal | QAIRT 2.37, ONNX Runtime 1.23.0 | Download |
| QNN_DLC | float | Universal | QAIRT 2.42 | Download |
| TFLITE | float | Universal | QAIRT 2.42, TFLite 2.17.0 | Download |
For more device-specific assets and performance metrics, visit AOT-GAN on Qualcomm® AI Hub.
Option 2: Export with Custom Configurations
Use the Qualcomm® AI Hub Models Python library to compile and export the model with your own:
- Custom weights (e.g., fine-tuned checkpoints)
- Custom input shapes
- Target device and runtime configurations
This option is ideal if you need to customize the model beyond the default configuration provided here.
See our repository for AOT-GAN on GitHub for usage instructions.
Model Details
Model Type: Model_use_case.image_editing
Model Stats:
- Model checkpoint: CelebAHQ
- Input resolution: 512x512
- Number of parameters: 15.2M
- Model size (float): 58.0 MB
Performance Summary
| Model | Runtime | Precision | Chipset | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit |
|---|---|---|---|---|---|---|
| AOT-GAN | ONNX | float | Snapdragon® X Elite | 134.883 ms | 33 - 33 MB | NPU |
| AOT-GAN | ONNX | float | Snapdragon® 8 Gen 3 Mobile | 95.525 ms | 0 - 613 MB | NPU |
| AOT-GAN | ONNX | float | Qualcomm® QCS8550 (Proxy) | 131.493 ms | 0 - 41 MB | NPU |
| AOT-GAN | ONNX | float | Qualcomm® QCS9075 | 235.017 ms | 4 - 11 MB | NPU |
| AOT-GAN | ONNX | float | Snapdragon® 8 Elite For Galaxy Mobile | 73.302 ms | 6 - 470 MB | NPU |
| AOT-GAN | ONNX | float | Snapdragon® 8 Elite Gen 5 Mobile | 49.908 ms | 0 - 368 MB | NPU |
| AOT-GAN | QNN_DLC | float | Snapdragon® X Elite | 123.938 ms | 4 - 4 MB | NPU |
| AOT-GAN | QNN_DLC | float | Snapdragon® 8 Gen 3 Mobile | 87.065 ms | 0 - 715 MB | NPU |
| AOT-GAN | QNN_DLC | float | Qualcomm® QCS8275 (Proxy) | 544.041 ms | 1 - 533 MB | NPU |
| AOT-GAN | QNN_DLC | float | Qualcomm® QCS8550 (Proxy) | 119.365 ms | 4 - 7 MB | NPU |
| AOT-GAN | QNN_DLC | float | Qualcomm® SA8775P | 161.848 ms | 2 - 533 MB | NPU |
| AOT-GAN | QNN_DLC | float | Qualcomm® QCS9075 | 214.832 ms | 4 - 13 MB | NPU |
| AOT-GAN | QNN_DLC | float | Qualcomm® QCS8450 (Proxy) | 215.163 ms | 3 - 635 MB | NPU |
| AOT-GAN | QNN_DLC | float | Qualcomm® SA7255P | 544.041 ms | 1 - 533 MB | NPU |
| AOT-GAN | QNN_DLC | float | Qualcomm® SA8295P | 179.326 ms | 2 - 471 MB | NPU |
| AOT-GAN | QNN_DLC | float | Snapdragon® 8 Elite For Galaxy Mobile | 69.435 ms | 3 - 565 MB | NPU |
| AOT-GAN | QNN_DLC | float | Snapdragon® 8 Elite Gen 5 Mobile | 47.503 ms | 4 - 473 MB | NPU |
| AOT-GAN | TFLITE | float | Snapdragon® 8 Gen 3 Mobile | 86.747 ms | 2 - 750 MB | NPU |
| AOT-GAN | TFLITE | float | Qualcomm® QCS8275 (Proxy) | 557.097 ms | 3 - 549 MB | NPU |
| AOT-GAN | TFLITE | float | Qualcomm® QCS8550 (Proxy) | 122.154 ms | 3 - 6 MB | NPU |
| AOT-GAN | TFLITE | float | Qualcomm® SA8775P | 168.373 ms | 0 - 547 MB | NPU |
| AOT-GAN | TFLITE | float | Qualcomm® QCS9075 | 213.878 ms | 2 - 45 MB | NPU |
| AOT-GAN | TFLITE | float | Qualcomm® QCS8450 (Proxy) | 214.174 ms | 3 - 666 MB | NPU |
| AOT-GAN | TFLITE | float | Qualcomm® SA7255P | 557.097 ms | 3 - 549 MB | NPU |
| AOT-GAN | TFLITE | float | Qualcomm® SA8295P | 183.927 ms | 3 - 488 MB | NPU |
| AOT-GAN | TFLITE | float | Snapdragon® 8 Elite For Galaxy Mobile | 69.074 ms | 3 - 580 MB | NPU |
| AOT-GAN | TFLITE | float | Snapdragon® 8 Elite Gen 5 Mobile | 47.494 ms | 1 - 490 MB | NPU |
License
- The license for the original implementation of AOT-GAN can be found here.
References
- Aggregated Contextual Transformations for High-Resolution Image Inpainting
- Source Model Implementation
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
