DeepLabXception: Optimized for Mobile Deployment

Deep Convolutional Neural Network model for semantic segmentation

DeepLabXception is a semantic segmentation model supporting multiple backbones like ResNet-101 and Xception, with flexible dataset compatibility including COCO, VOC, and Cityscapes.

This model is an implementation of DeepLabXception found here.

This repository provides scripts to run DeepLabXception on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.semantic_segmentation
  • Model Stats:
    • Model checkpoint: COCO_WITH_VOC_LABELS_V1
    • Input resolution: 480x520
    • Number of output classes: 21
    • Number of parameters: 41.26M
    • Model size (float): 158 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
DeepLabXception float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 120.892 ms 0 - 171 MB NPU DeepLabXception.tflite
DeepLabXception float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 112.829 ms 0 - 76 MB NPU DeepLabXception.dlc
DeepLabXception float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 40.778 ms 0 - 172 MB NPU DeepLabXception.tflite
DeepLabXception float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 52.14 ms 0 - 79 MB NPU DeepLabXception.dlc
DeepLabXception float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 24.657 ms 0 - 26 MB NPU DeepLabXception.tflite
DeepLabXception float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 21.564 ms 3 - 33 MB NPU DeepLabXception.dlc
DeepLabXception float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 34.888 ms 0 - 170 MB NPU DeepLabXception.tflite
DeepLabXception float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 30.527 ms 0 - 76 MB NPU DeepLabXception.dlc
DeepLabXception float SA7255P ADP Qualcomm® SA7255P TFLITE 120.892 ms 0 - 171 MB NPU DeepLabXception.tflite
DeepLabXception float SA7255P ADP Qualcomm® SA7255P QNN_DLC 112.829 ms 0 - 76 MB NPU DeepLabXception.dlc
DeepLabXception float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 24.881 ms 0 - 23 MB NPU DeepLabXception.tflite
DeepLabXception float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 21.888 ms 3 - 32 MB NPU DeepLabXception.dlc
DeepLabXception float SA8295P ADP Qualcomm® SA8295P TFLITE 45.182 ms 0 - 167 MB NPU DeepLabXception.tflite
DeepLabXception float SA8295P ADP Qualcomm® SA8295P QNN_DLC 39.099 ms 0 - 81 MB NPU DeepLabXception.dlc
DeepLabXception float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 24.559 ms 0 - 26 MB NPU DeepLabXception.tflite
DeepLabXception float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 21.801 ms 2 - 32 MB NPU DeepLabXception.dlc
DeepLabXception float SA8775P ADP Qualcomm® SA8775P TFLITE 34.888 ms 0 - 170 MB NPU DeepLabXception.tflite
DeepLabXception float SA8775P ADP Qualcomm® SA8775P QNN_DLC 30.527 ms 0 - 76 MB NPU DeepLabXception.dlc
DeepLabXception float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile TFLITE 24.776 ms 0 - 22 MB NPU DeepLabXception.tflite
DeepLabXception float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_DLC 21.808 ms 3 - 33 MB NPU DeepLabXception.dlc
DeepLabXception float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile ONNX 21.94 ms 0 - 115 MB NPU DeepLabXception.onnx.zip
DeepLabXception float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 18.293 ms 0 - 196 MB NPU DeepLabXception.tflite
DeepLabXception float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 15.963 ms 3 - 110 MB NPU DeepLabXception.dlc
DeepLabXception float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 16.518 ms 3 - 97 MB NPU DeepLabXception.onnx.zip
DeepLabXception float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile TFLITE 16.852 ms 0 - 173 MB NPU DeepLabXception.tflite
DeepLabXception float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_DLC 14.019 ms 3 - 85 MB NPU DeepLabXception.dlc
DeepLabXception float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile ONNX 14.651 ms 3 - 70 MB NPU DeepLabXception.onnx.zip
DeepLabXception float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 22.614 ms 189 - 189 MB NPU DeepLabXception.dlc
DeepLabXception float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 23.402 ms 85 - 85 MB NPU DeepLabXception.onnx.zip
DeepLabXception w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 20.477 ms 0 - 114 MB NPU DeepLabXception.tflite
DeepLabXception w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 20.663 ms 1 - 142 MB NPU DeepLabXception.dlc
DeepLabXception w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 9.723 ms 0 - 129 MB NPU DeepLabXception.tflite
DeepLabXception w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 15.459 ms 1 - 146 MB NPU DeepLabXception.dlc
DeepLabXception w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 7.536 ms 0 - 21 MB NPU DeepLabXception.tflite
DeepLabXception w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 8.032 ms 1 - 31 MB NPU DeepLabXception.dlc
DeepLabXception w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 7.983 ms 0 - 112 MB NPU DeepLabXception.tflite
DeepLabXception w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 8.241 ms 1 - 138 MB NPU DeepLabXception.dlc
DeepLabXception w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) TFLITE 37.192 ms 0 - 119 MB NPU DeepLabXception.tflite
DeepLabXception w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) QNN_DLC 55.477 ms 1 - 136 MB NPU DeepLabXception.dlc
DeepLabXception w8a8 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) TFLITE 222.004 ms 21 - 37 MB NPU DeepLabXception.tflite
DeepLabXception w8a8 SA7255P ADP Qualcomm® SA7255P TFLITE 20.477 ms 0 - 114 MB NPU DeepLabXception.tflite
DeepLabXception w8a8 SA7255P ADP Qualcomm® SA7255P QNN_DLC 20.663 ms 1 - 142 MB NPU DeepLabXception.dlc
DeepLabXception w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 7.568 ms 0 - 18 MB NPU DeepLabXception.tflite
DeepLabXception w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 8.047 ms 0 - 27 MB NPU DeepLabXception.dlc
DeepLabXception w8a8 SA8295P ADP Qualcomm® SA8295P TFLITE 12.857 ms 0 - 113 MB NPU DeepLabXception.tflite
DeepLabXception w8a8 SA8295P ADP Qualcomm® SA8295P QNN_DLC 12.906 ms 1 - 131 MB NPU DeepLabXception.dlc
DeepLabXception w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 7.536 ms 0 - 22 MB NPU DeepLabXception.tflite
DeepLabXception w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 8.041 ms 1 - 26 MB NPU DeepLabXception.dlc
DeepLabXception w8a8 SA8775P ADP Qualcomm® SA8775P TFLITE 7.983 ms 0 - 112 MB NPU DeepLabXception.tflite
DeepLabXception w8a8 SA8775P ADP Qualcomm® SA8775P QNN_DLC 8.241 ms 1 - 138 MB NPU DeepLabXception.dlc
DeepLabXception w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile TFLITE 7.525 ms 0 - 22 MB NPU DeepLabXception.tflite
DeepLabXception w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_DLC 8.031 ms 0 - 31 MB NPU DeepLabXception.dlc
DeepLabXception w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 5.41 ms 0 - 139 MB NPU DeepLabXception.tflite
DeepLabXception w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 5.673 ms 0 - 161 MB NPU DeepLabXception.dlc
DeepLabXception w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile TFLITE 5.039 ms 0 - 115 MB NPU DeepLabXception.tflite
DeepLabXception w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_DLC 4.3 ms 1 - 128 MB NPU DeepLabXception.dlc
DeepLabXception w8a8 Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 8.708 ms 131 - 131 MB NPU DeepLabXception.dlc

Installation

Install the package via pip:

pip install qai-hub-models

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.deeplab_xception.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.deeplab_xception.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.deeplab_xception.export

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.deeplab_xception import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.deeplab_xception.demo --eval-mode on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.deeplab_xception.demo -- --eval-mode on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on DeepLabXception's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of DeepLabXception can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month
15
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support