EfficientFormer / README.md
qaihm-bot's picture
v0.36.0
f482057 verified
---
library_name: pytorch
license: other
tags:
- android
pipeline_tag: image-classification
---
![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/efficientformer/web-assets/model_demo.png)
# EfficientFormer: Optimized for Mobile Deployment
## Imagenet classifier and general purpose backbone
EfficientFormer is a vision transformer model that can classify images from the Imagenet dataset.
This model is an implementation of EfficientFormer found [here](https://github.com/snap-research/EfficientFormer).
This repository provides scripts to run EfficientFormer on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/efficientformer).
### Model Details
- **Model Type:** Model_use_case.image_classification
- **Model Stats:**
- Model checkpoint: efficientformer_l1_300d
- Input resolution: 224x224
- Number of parameters: 12.3M
- Model size (float): 46.9 MB
- Model size (w8a16): 12.2 MB
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| EfficientFormer | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 4.93 ms | 0 - 48 MB | NPU | [EfficientFormer.tflite](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer.tflite) |
| EfficientFormer | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 4.994 ms | 1 - 34 MB | NPU | [EfficientFormer.dlc](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer.dlc) |
| EfficientFormer | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 3.825 ms | 0 - 55 MB | NPU | [EfficientFormer.tflite](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer.tflite) |
| EfficientFormer | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 5.702 ms | 0 - 42 MB | NPU | [EfficientFormer.dlc](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer.dlc) |
| EfficientFormer | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 1.519 ms | 0 - 157 MB | NPU | [EfficientFormer.tflite](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer.tflite) |
| EfficientFormer | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.617 ms | 1 - 11 MB | NPU | [EfficientFormer.dlc](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer.dlc) |
| EfficientFormer | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 2.096 ms | 0 - 48 MB | NPU | [EfficientFormer.tflite](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer.tflite) |
| EfficientFormer | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 2.298 ms | 1 - 34 MB | NPU | [EfficientFormer.dlc](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer.dlc) |
| EfficientFormer | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 1.523 ms | 0 - 156 MB | NPU | [EfficientFormer.tflite](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer.tflite) |
| EfficientFormer | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 1.651 ms | 1 - 10 MB | NPU | [EfficientFormer.dlc](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer.dlc) |
| EfficientFormer | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 5.967 ms | 0 - 39 MB | NPU | [EfficientFormer.onnx.zip](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer.onnx.zip) |
| EfficientFormer | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1.057 ms | 0 - 59 MB | NPU | [EfficientFormer.tflite](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer.tflite) |
| EfficientFormer | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 1.125 ms | 1 - 44 MB | NPU | [EfficientFormer.dlc](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer.dlc) |
| EfficientFormer | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 4.096 ms | 0 - 45 MB | NPU | [EfficientFormer.onnx.zip](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer.onnx.zip) |
| EfficientFormer | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 0.941 ms | 0 - 52 MB | NPU | [EfficientFormer.tflite](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer.tflite) |
| EfficientFormer | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 0.825 ms | 1 - 38 MB | NPU | [EfficientFormer.dlc](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer.dlc) |
| EfficientFormer | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 3.739 ms | 1 - 42 MB | NPU | [EfficientFormer.onnx.zip](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer.onnx.zip) |
| EfficientFormer | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1.904 ms | 102 - 102 MB | NPU | [EfficientFormer.dlc](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer.dlc) |
| EfficientFormer | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 6.192 ms | 24 - 24 MB | NPU | [EfficientFormer.onnx.zip](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer.onnx.zip) |
| EfficientFormer | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 1.695 ms | 0 - 27 MB | NPU | [EfficientFormer.tflite](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer_w8a8.tflite) |
| EfficientFormer | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 0.852 ms | 0 - 46 MB | NPU | [EfficientFormer.tflite](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer_w8a8.tflite) |
| EfficientFormer | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 0.744 ms | 0 - 59 MB | NPU | [EfficientFormer.tflite](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer_w8a8.tflite) |
| EfficientFormer | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 0.997 ms | 0 - 27 MB | NPU | [EfficientFormer.tflite](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer_w8a8.tflite) |
| EfficientFormer | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 4.185 ms | 0 - 39 MB | NPU | [EfficientFormer.tflite](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer_w8a8.tflite) |
| EfficientFormer | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 44.509 ms | 1 - 80 MB | GPU | [EfficientFormer.tflite](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer_w8a8.tflite) |
| EfficientFormer | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 0.743 ms | 0 - 59 MB | NPU | [EfficientFormer.tflite](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer_w8a8.tflite) |
| EfficientFormer | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 9.494 ms | 25 - 49 MB | NPU | [EfficientFormer.onnx.zip](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer_w8a8.onnx.zip) |
| EfficientFormer | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.53 ms | 0 - 45 MB | NPU | [EfficientFormer.tflite](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer_w8a8.tflite) |
| EfficientFormer | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 6.246 ms | 23 - 82 MB | NPU | [EfficientFormer.onnx.zip](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer_w8a8.onnx.zip) |
| EfficientFormer | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 0.41 ms | 1 - 34 MB | NPU | [EfficientFormer.tflite](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer_w8a8.tflite) |
| EfficientFormer | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 5.503 ms | 28 - 71 MB | NPU | [EfficientFormer.onnx.zip](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer_w8a8.onnx.zip) |
| EfficientFormer | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 8.31 ms | 25 - 25 MB | NPU | [EfficientFormer.onnx.zip](https://huggingface.co/qualcomm/EfficientFormer/blob/main/EfficientFormer_w8a8.onnx.zip) |
## Installation
Install the package via pip:
```bash
pip install "qai-hub-models[efficientformer]"
```
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
## Demo off target
The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.
```bash
python -m qai_hub_models.models.efficientformer.demo
```
The above demo runs a reference implementation of pre-processing, model
inference, and post processing.
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.efficientformer.demo
```
### Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.
```bash
python -m qai_hub_models.models.efficientformer.export
```
## How does this work?
This [export script](https://aihub.qualcomm.com/models/efficientformer/qai_hub_models/models/EfficientFormer/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:
Step 1: **Compile model for on-device deployment**
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.
```python
import torch
import qai_hub as hub
from qai_hub_models.models.efficientformer import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S24")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
```
Step 2: **Performance profiling on cloud-hosted device**
After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
```
Step 3: **Verify on-device accuracy**
To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.
**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
## Run demo on a cloud-hosted device
You can also run the demo on-device.
```bash
python -m qai_hub_models.models.efficientformer.demo --eval-mode on-device
```
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.efficientformer.demo -- --eval-mode on-device
```
## Deploying compiled model to Android
The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
guide to deploy the .tflite model in an Android application.
- QNN (`.so` export ): This [sample
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library in an Android application.
## View on Qualcomm® AI Hub
Get more details on EfficientFormer's performance across various devices [here](https://aihub.qualcomm.com/models/efficientformer).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
## License
* The license for the original implementation of EfficientFormer can be found
[here](https://github.com/snap-research/EfficientFormer?tab=License-1-ov-file#readme).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
## References
* [Rethinking Vision Transformers for MobileNet Size and Speed](https://arxiv.org/abs/2212.08059)
* [Source Model Implementation](https://github.com/snap-research/EfficientFormer)
## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).