FFNet-78S: Optimized for Mobile Deployment
Semantic segmentation for automotive street scenes
FFNet-78S is a "fuss-free network" that segments street scene images with per-pixel classes like road, sidewalk, and pedestrian. Trained on the Cityscapes dataset.
This model is an implementation of FFNet-78S found here.
This repository provides scripts to run FFNet-78S on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.semantic_segmentation
- Model Stats:
- Model checkpoint: ffnet78S_dBBB_cityscapes_state_dict_quarts
- Input resolution: 2048x1024
- Number of parameters: 27.5M
- Number of output classes: 19
- Model size (float): 105 MB
- Model size (w8a8): 26.7 MB
Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
FFNet-78S | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 200.123 ms | 2 - 74 MB | NPU | FFNet-78S.tflite |
FFNet-78S | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 1238.312 ms | 24 - 34 MB | NPU | Use Export Script |
FFNet-78S | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 67.199 ms | 2 - 122 MB | NPU | FFNet-78S.tflite |
FFNet-78S | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN | 78.866 ms | 24 - 77 MB | NPU | Use Export Script |
FFNet-78S | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 49.602 ms | 2 - 21 MB | NPU | FFNet-78S.tflite |
FFNet-78S | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 40.166 ms | 24 - 26 MB | NPU | Use Export Script |
FFNet-78S | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 68.935 ms | 2 - 74 MB | NPU | FFNet-78S.tflite |
FFNet-78S | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 58.768 ms | 24 - 36 MB | NPU | Use Export Script |
FFNet-78S | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 200.123 ms | 2 - 74 MB | NPU | FFNet-78S.tflite |
FFNet-78S | float | SA7255P ADP | Qualcomm® SA7255P | QNN | 1238.312 ms | 24 - 34 MB | NPU | Use Export Script |
FFNet-78S | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 49.849 ms | 2 - 24 MB | NPU | FFNet-78S.tflite |
FFNet-78S | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 40.014 ms | 24 - 26 MB | NPU | Use Export Script |
FFNet-78S | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 77.09 ms | 2 - 72 MB | NPU | FFNet-78S.tflite |
FFNet-78S | float | SA8295P ADP | Qualcomm® SA8295P | QNN | 65.831 ms | 24 - 42 MB | NPU | Use Export Script |
FFNet-78S | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 49.887 ms | 2 - 26 MB | NPU | FFNet-78S.tflite |
FFNet-78S | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 40.024 ms | 24 - 26 MB | NPU | Use Export Script |
FFNet-78S | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 68.935 ms | 2 - 74 MB | NPU | FFNet-78S.tflite |
FFNet-78S | float | SA8775P ADP | Qualcomm® SA8775P | QNN | 58.768 ms | 24 - 36 MB | NPU | Use Export Script |
FFNet-78S | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 49.623 ms | 2 - 22 MB | NPU | FFNet-78S.tflite |
FFNet-78S | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 40.081 ms | 24 - 47 MB | NPU | Use Export Script |
FFNet-78S | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 41.493 ms | 29 - 163 MB | NPU | FFNet-78S.onnx |
FFNet-78S | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 34.026 ms | 2 - 125 MB | NPU | FFNet-78S.tflite |
FFNet-78S | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 28.02 ms | 24 - 76 MB | NPU | Use Export Script |
FFNet-78S | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 29.94 ms | 24 - 80 MB | NPU | FFNet-78S.onnx |
FFNet-78S | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 28.695 ms | 2 - 77 MB | NPU | FFNet-78S.tflite |
FFNet-78S | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 26.755 ms | 24 - 86 MB | NPU | Use Export Script |
FFNet-78S | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 26.697 ms | 30 - 78 MB | NPU | FFNet-78S.onnx |
FFNet-78S | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 41.57 ms | 24 - 24 MB | NPU | Use Export Script |
FFNet-78S | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 42.89 ms | 30 - 30 MB | NPU | FFNet-78S.onnx |
FFNet-78S | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 29.475 ms | 1 - 50 MB | NPU | FFNet-78S.tflite |
FFNet-78S | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 162.905 ms | 6 - 16 MB | NPU | Use Export Script |
FFNet-78S | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 12.252 ms | 1 - 79 MB | NPU | FFNet-78S.tflite |
FFNet-78S | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN | 20.713 ms | 6 - 90 MB | NPU | Use Export Script |
FFNet-78S | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 10.709 ms | 1 - 14 MB | NPU | FFNet-78S.tflite |
FFNet-78S | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 16.603 ms | 6 - 9 MB | NPU | Use Export Script |
FFNet-78S | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 11.141 ms | 0 - 50 MB | NPU | FFNet-78S.tflite |
FFNet-78S | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 17.089 ms | 6 - 21 MB | NPU | Use Export Script |
FFNet-78S | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 73.975 ms | 1 - 77 MB | NPU | FFNet-78S.tflite |
FFNet-78S | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN | 84.703 ms | 6 - 18 MB | NPU | Use Export Script |
FFNet-78S | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 337.817 ms | 1 - 12 MB | NPU | FFNet-78S.tflite |
FFNet-78S | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 29.475 ms | 1 - 50 MB | NPU | FFNet-78S.tflite |
FFNet-78S | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN | 162.905 ms | 6 - 16 MB | NPU | Use Export Script |
FFNet-78S | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 10.737 ms | 1 - 12 MB | NPU | FFNet-78S.tflite |
FFNet-78S | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 16.585 ms | 8 - 10 MB | NPU | Use Export Script |
FFNet-78S | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 16.755 ms | 1 - 52 MB | NPU | FFNet-78S.tflite |
FFNet-78S | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN | 23.588 ms | 6 - 24 MB | NPU | Use Export Script |
FFNet-78S | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 10.603 ms | 1 - 14 MB | NPU | FFNet-78S.tflite |
FFNet-78S | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 16.601 ms | 6 - 8 MB | NPU | Use Export Script |
FFNet-78S | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 11.141 ms | 0 - 50 MB | NPU | FFNet-78S.tflite |
FFNet-78S | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN | 17.089 ms | 6 - 21 MB | NPU | Use Export Script |
FFNet-78S | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 10.557 ms | 1 - 14 MB | NPU | FFNet-78S.tflite |
FFNet-78S | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 16.512 ms | 6 - 29 MB | NPU | Use Export Script |
FFNet-78S | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 18.823 ms | 2 - 94 MB | NPU | FFNet-78S.onnx |
FFNet-78S | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 7.617 ms | 1 - 75 MB | NPU | FFNet-78S.tflite |
FFNet-78S | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 11.801 ms | 6 - 91 MB | NPU | Use Export Script |
FFNet-78S | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 14.797 ms | 10 - 159 MB | NPU | FFNet-78S.onnx |
FFNet-78S | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 7.431 ms | 1 - 54 MB | NPU | FFNet-78S.tflite |
FFNet-78S | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 9.537 ms | 6 - 79 MB | NPU | Use Export Script |
FFNet-78S | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 12.725 ms | 10 - 127 MB | NPU | FFNet-78S.onnx |
FFNet-78S | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 17.536 ms | 6 - 6 MB | NPU | Use Export Script |
FFNet-78S | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 22.144 ms | 22 - 22 MB | NPU | FFNet-78S.onnx |
Installation
Install the package via pip:
pip install "qai-hub-models[ffnet-78s]"
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.ffnet_78s.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.ffnet_78s.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.ffnet_78s.export
Profiling Results
------------------------------------------------------------
FFNet-78S
Device : cs_8275 (ANDROID 14)
Runtime : TFLITE
Estimated inference time (ms) : 200.1
Estimated peak memory usage (MB): [2, 74]
Total # Ops : 151
Compute Unit(s) : npu (151 ops) gpu (0 ops) cpu (0 ops)
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace
and then call the submit_compile_job
API.
import torch
import qai_hub as hub
from qai_hub_models.models.ffnet_78s import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S24")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model
. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.
Run demo on a cloud-hosted device
You can also run the demo on-device.
python -m qai_hub_models.models.ffnet_78s.demo --on-device
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.ffnet_78s.demo -- --on-device
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on FFNet-78S's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of FFNet-78S can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
- Downloads last month
- 51