MobileSam: Optimized for Mobile Deployment
FASTER SEGMENT ANYTHING: TOWARDS LIGHTWEIGHT SAM FOR MOBILE APPLICATIONS
Transformer based encoder-decoder where prompts specify what to segment in an image thereby allowing segmentation without the need for additional training. The image encoder generates embeddings and the lightweight decoder operates on the embeddings for point and mask based image segmentation.
This model is an implementation of MobileSam found here.
This repository provides scripts to run MobileSam on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Semantic segmentation
- Model Stats:
- Model checkpoint: vit_t
- Input resolution: 720p (720x1280)
- Number of parameters (MobileSamDecoder): 3.876M
- Model size (MobileSamDecoder): 19.6 MB
Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
SAMEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 439.913 ms | 34 - 60 MB | FP16 | NPU | MobileSam.tflite |
SAMEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 334.816 ms | 12 - 89 MB | FP16 | NPU | MobileSam.so |
SAMEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 417.54 ms | 65 - 122 MB | FP16 | NPU | MobileSam.onnx |
SAMEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 335.191 ms | 33 - 158 MB | FP16 | NPU | MobileSam.tflite |
SAMEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 247.716 ms | 191 - 694 MB | FP16 | NPU | MobileSam.so |
SAMEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 313.436 ms | 95 - 218 MB | FP16 | NPU | MobileSam.onnx |
SAMEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 237.753 ms | 33 - 166 MB | FP16 | NPU | MobileSam.tflite |
SAMEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 235.822 ms | 12 - 519 MB | FP16 | NPU | Use Export Script |
SAMEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 271.979 ms | 78 - 213 MB | FP16 | NPU | MobileSam.onnx |
SAMEncoder | SA7255P ADP | SA7255P | TFLITE | 1302.15 ms | 33 - 166 MB | FP16 | NPU | MobileSam.tflite |
SAMEncoder | SA7255P ADP | SA7255P | QNN | 991.612 ms | 12 - 21 MB | FP16 | NPU | Use Export Script |
SAMEncoder | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 415.155 ms | 33 - 59 MB | FP16 | NPU | MobileSam.tflite |
SAMEncoder | SA8255 (Proxy) | SA8255P Proxy | QNN | 266.684 ms | 12 - 15 MB | FP16 | NPU | Use Export Script |
SAMEncoder | SA8295P ADP | SA8295P | TFLITE | 585.405 ms | 33 - 168 MB | FP16 | NPU | MobileSam.tflite |
SAMEncoder | SA8295P ADP | SA8295P | QNN | 424.958 ms | 0 - 18 MB | FP16 | NPU | Use Export Script |
SAMEncoder | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 432.024 ms | 33 - 58 MB | FP16 | NPU | MobileSam.tflite |
SAMEncoder | SA8650 (Proxy) | SA8650P Proxy | QNN | 268.519 ms | 12 - 15 MB | FP16 | NPU | Use Export Script |
SAMEncoder | SA8775P ADP | SA8775P | TFLITE | 494.361 ms | 33 - 165 MB | FP16 | NPU | MobileSam.tflite |
SAMEncoder | SA8775P ADP | SA8775P | QNN | 330.266 ms | 1 - 11 MB | FP16 | NPU | Use Export Script |
SAMEncoder | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 1302.15 ms | 33 - 166 MB | FP16 | NPU | MobileSam.tflite |
SAMEncoder | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 991.612 ms | 12 - 21 MB | FP16 | NPU | Use Export Script |
SAMEncoder | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 420.702 ms | 33 - 60 MB | FP16 | NPU | MobileSam.tflite |
SAMEncoder | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 270.321 ms | 12 - 15 MB | FP16 | NPU | Use Export Script |
SAMEncoder | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 494.361 ms | 33 - 165 MB | FP16 | NPU | MobileSam.tflite |
SAMEncoder | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 330.266 ms | 1 - 11 MB | FP16 | NPU | Use Export Script |
SAMEncoder | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 597.124 ms | 33 - 171 MB | FP16 | NPU | MobileSam.tflite |
SAMEncoder | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 503.439 ms | 12 - 572 MB | FP16 | NPU | Use Export Script |
SAMEncoder | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 275.036 ms | 12 - 12 MB | FP16 | NPU | Use Export Script |
SAMEncoder | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 448.994 ms | 130 - 130 MB | FP16 | NPU | MobileSam.onnx |
SAMDecoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 7.38 ms | 0 - 29 MB | FP16 | NPU | MobileSam.tflite |
SAMDecoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 6.435 ms | 4 - 21 MB | FP16 | NPU | MobileSam.so |
SAMDecoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 8.887 ms | 1 - 62 MB | FP16 | NPU | MobileSam.onnx |
SAMDecoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 5.151 ms | 0 - 46 MB | FP16 | NPU | MobileSam.tflite |
SAMDecoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 4.55 ms | 4 - 48 MB | FP16 | NPU | MobileSam.so |
SAMDecoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 6.067 ms | 6 - 75 MB | FP16 | NPU | MobileSam.onnx |
SAMDecoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 5.041 ms | 0 - 44 MB | FP16 | NPU | MobileSam.tflite |
SAMDecoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 4.357 ms | 4 - 42 MB | FP16 | NPU | Use Export Script |
SAMDecoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 4.566 ms | 4 - 62 MB | FP16 | NPU | MobileSam.onnx |
SAMDecoder | SA7255P ADP | SA7255P | TFLITE | 53.054 ms | 0 - 40 MB | FP16 | NPU | MobileSam.tflite |
SAMDecoder | SA7255P ADP | SA7255P | QNN | 48.542 ms | 1 - 11 MB | FP16 | NPU | Use Export Script |
SAMDecoder | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 7.371 ms | 0 - 26 MB | FP16 | NPU | MobileSam.tflite |
SAMDecoder | SA8255 (Proxy) | SA8255P Proxy | QNN | 6.184 ms | 4 - 6 MB | FP16 | NPU | Use Export Script |
SAMDecoder | SA8295P ADP | SA8295P | TFLITE | 9.906 ms | 0 - 36 MB | FP16 | NPU | MobileSam.tflite |
SAMDecoder | SA8295P ADP | SA8295P | QNN | 7.432 ms | 0 - 17 MB | FP16 | NPU | Use Export Script |
SAMDecoder | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 7.351 ms | 0 - 25 MB | FP16 | NPU | MobileSam.tflite |
SAMDecoder | SA8650 (Proxy) | SA8650P Proxy | QNN | 6.18 ms | 4 - 7 MB | FP16 | NPU | Use Export Script |
SAMDecoder | SA8775P ADP | SA8775P | TFLITE | 10.347 ms | 0 - 40 MB | FP16 | NPU | MobileSam.tflite |
SAMDecoder | SA8775P ADP | SA8775P | QNN | 8.85 ms | 1 - 11 MB | FP16 | NPU | Use Export Script |
SAMDecoder | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 53.054 ms | 0 - 40 MB | FP16 | NPU | MobileSam.tflite |
SAMDecoder | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 48.542 ms | 1 - 11 MB | FP16 | NPU | Use Export Script |
SAMDecoder | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 7.346 ms | 0 - 26 MB | FP16 | NPU | MobileSam.tflite |
SAMDecoder | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 6.298 ms | 4 - 6 MB | FP16 | NPU | Use Export Script |
SAMDecoder | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 10.347 ms | 0 - 40 MB | FP16 | NPU | MobileSam.tflite |
SAMDecoder | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 8.85 ms | 1 - 11 MB | FP16 | NPU | Use Export Script |
SAMDecoder | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 8.763 ms | 0 - 42 MB | FP16 | NPU | MobileSam.tflite |
SAMDecoder | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 8.018 ms | 4 - 42 MB | FP16 | NPU | Use Export Script |
SAMDecoder | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 6.736 ms | 4 - 4 MB | FP16 | NPU | Use Export Script |
SAMDecoder | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 10.021 ms | 12 - 12 MB | FP16 | NPU | MobileSam.onnx |
Installation
Install the package via pip:
pip install "qai-hub-models[mobilesam]"
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.mobilesam.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.mobilesam.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.mobilesam.export
Profiling Results
------------------------------------------------------------
SAMEncoder
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 439.9
Estimated peak memory usage (MB): [34, 60]
Total # Ops : 592
Compute Unit(s) : NPU (532 ops) CPU (60 ops)
------------------------------------------------------------
SAMDecoder
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 7.4
Estimated peak memory usage (MB): [0, 29]
Total # Ops : 845
Compute Unit(s) : NPU (845 ops)
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace
and then call the submit_compile_job
API.
import torch
import qai_hub as hub
from qai_hub_models.models.mobilesam import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S24")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model
. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.
Run demo on a cloud-hosted device
You can also run the demo on-device.
python -m qai_hub_models.models.mobilesam.demo --on-device
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.mobilesam.demo -- --on-device
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on MobileSam's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of MobileSam can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.