Stable-Diffusion-v1.5: Optimized for Mobile Deployment
State-of-the-art generative AI model used to generate detailed images conditioned on text descriptions
Generates high resolution images from text prompts using a latent diffusion model. This model uses CLIP ViT-L/14 as text encoder, U-Net based latent denoising, and VAE based decoder to generate the final image.
This model is an implementation of Stable-Diffusion-v1.5 found here.
This repository provides scripts to run Stable-Diffusion-v1.5 on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.image_generation
- Model Stats:
- Input: Text prompt to generate image
- Text Encoder Number of parameters: 340M
- UNet Number of parameters: 865M
- VAE Decoder Number of parameters: 83M
- Model size: 1GB
Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
text_encoder | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_CONTEXT_BINARY | 11.177 ms | 0 - 9 MB | NPU | Use Export Script |
text_encoder | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_CONTEXT_BINARY | 5.379 ms | 0 - 3 MB | NPU | Use Export Script |
text_encoder | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 5.934 ms | 0 - 9 MB | NPU | Use Export Script |
text_encoder | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_CONTEXT_BINARY | 11.177 ms | 0 - 9 MB | NPU | Use Export Script |
text_encoder | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_CONTEXT_BINARY | 5.39 ms | 0 - 2 MB | NPU | Use Export Script |
text_encoder | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_CONTEXT_BINARY | 5.393 ms | 0 - 2 MB | NPU | Use Export Script |
text_encoder | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_CONTEXT_BINARY | 5.934 ms | 0 - 9 MB | NPU | Use Export Script |
text_encoder | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_CONTEXT_BINARY | 5.425 ms | 0 - 2 MB | NPU | Use Export Script |
text_encoder | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | PRECOMPILED_QNN_ONNX | 5.752 ms | 0 - 162 MB | NPU | Use Export Script |
text_encoder | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 3.859 ms | 0 - 21 MB | NPU | Use Export Script |
text_encoder | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 4.095 ms | 0 - 18 MB | NPU | Use Export Script |
text_encoder | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_CONTEXT_BINARY | 3.502 ms | 0 - 14 MB | NPU | Use Export Script |
text_encoder | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | PRECOMPILED_QNN_ONNX | 3.754 ms | 0 - 14 MB | NPU | Use Export Script |
text_encoder | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 5.78 ms | 0 - 0 MB | NPU | Use Export Script |
text_encoder | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 5.973 ms | 157 - 157 MB | NPU | Use Export Script |
unet | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_CONTEXT_BINARY | 263.459 ms | 0 - 7 MB | NPU | Use Export Script |
unet | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_CONTEXT_BINARY | 110.455 ms | 0 - 3 MB | NPU | Use Export Script |
unet | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 105.323 ms | 0 - 8 MB | NPU | Use Export Script |
unet | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_CONTEXT_BINARY | 263.459 ms | 0 - 7 MB | NPU | Use Export Script |
unet | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_CONTEXT_BINARY | 111.615 ms | 0 - 3 MB | NPU | Use Export Script |
unet | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_CONTEXT_BINARY | 112.608 ms | 1 - 3 MB | NPU | Use Export Script |
unet | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_CONTEXT_BINARY | 105.323 ms | 0 - 8 MB | NPU | Use Export Script |
unet | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_CONTEXT_BINARY | 112.07 ms | 0 - 2 MB | NPU | Use Export Script |
unet | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | PRECOMPILED_QNN_ONNX | 112.646 ms | 0 - 898 MB | NPU | Use Export Script |
unet | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 78.302 ms | 0 - 18 MB | NPU | Use Export Script |
unet | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 79.141 ms | 0 - 16 MB | NPU | Use Export Script |
unet | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_CONTEXT_BINARY | 67.987 ms | 0 - 14 MB | NPU | Use Export Script |
unet | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | PRECOMPILED_QNN_ONNX | 67.669 ms | 0 - 16 MB | NPU | Use Export Script |
unet | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 113.448 ms | 0 - 0 MB | NPU | Use Export Script |
unet | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 114.287 ms | 842 - 842 MB | NPU | Use Export Script |
vae | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_CONTEXT_BINARY | 718.696 ms | 0 - 9 MB | NPU | Use Export Script |
vae | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_CONTEXT_BINARY | 267.155 ms | 0 - 4 MB | NPU | Use Export Script |
vae | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 249.019 ms | 0 - 10 MB | NPU | Use Export Script |
vae | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_CONTEXT_BINARY | 718.696 ms | 0 - 9 MB | NPU | Use Export Script |
vae | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_CONTEXT_BINARY | 266.02 ms | 0 - 3 MB | NPU | Use Export Script |
vae | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_CONTEXT_BINARY | 270.061 ms | 0 - 2 MB | NPU | Use Export Script |
vae | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_CONTEXT_BINARY | 249.019 ms | 0 - 10 MB | NPU | Use Export Script |
vae | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_CONTEXT_BINARY | 269.872 ms | 0 - 2 MB | NPU | Use Export Script |
vae | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | PRECOMPILED_QNN_ONNX | 275.709 ms | 0 - 67 MB | NPU | Use Export Script |
vae | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 203.419 ms | 0 - 20 MB | NPU | Use Export Script |
vae | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 204.585 ms | 3 - 22 MB | NPU | Use Export Script |
vae | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_CONTEXT_BINARY | 194.391 ms | 0 - 15 MB | NPU | Use Export Script |
vae | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | PRECOMPILED_QNN_ONNX | 193.899 ms | 3 - 17 MB | NPU | Use Export Script |
vae | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 265.468 ms | 0 - 0 MB | NPU | Use Export Script |
vae | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 264.813 ms | 62 - 62 MB | NPU | Use Export Script |
Deploy to Snapdragon X Elite NPU
Please follow the Stable Diffusion Windows App tutorial to quantize model with custom weights.
Quantize and Deploy Your Own Fine-Tuned Stable Diffusion
Please follow the Quantize Stable Diffusion tutorial to quantize model with custom weights.
Installation
Install the package via pip:
pip install "qai-hub-models[stable-diffusion-v1-5]"
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.stable_diffusion_v1_5.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.stable_diffusion_v1_5.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.stable_diffusion_v1_5.export
Profiling Results
------------------------------------------------------------
text_encoder
Device : cs_8275 (ANDROID 14)
Runtime : QNN_CONTEXT_BINARY
Estimated inference time (ms) : 11.2
Estimated peak memory usage (MB): [0, 9]
Total # Ops : 437
Compute Unit(s) : npu (437 ops) gpu (0 ops) cpu (0 ops)
------------------------------------------------------------
unet
Device : cs_8275 (ANDROID 14)
Runtime : QNN_CONTEXT_BINARY
Estimated inference time (ms) : 263.5
Estimated peak memory usage (MB): [0, 7]
Total # Ops : 4041
Compute Unit(s) : npu (4041 ops) gpu (0 ops) cpu (0 ops)
------------------------------------------------------------
vae
Device : cs_8275 (ANDROID 14)
Runtime : QNN_CONTEXT_BINARY
Estimated inference time (ms) : 718.7
Estimated peak memory usage (MB): [0, 9]
Total # Ops : 173
Compute Unit(s) : npu (173 ops) gpu (0 ops) cpu (0 ops)
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on Stable-Diffusion-v1.5's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of Stable-Diffusion-v1.5 can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.