TrOCR: Optimized for Mobile Deployment
Transformer based model for state-of-the-art optical character recognition (OCR) on both printed and handwritten text
End-to-end text recognition approach with pre-trained image transformer and text transformer models for both image understanding and wordpiece-level text generation.
This model is an implementation of TrOCR found here.
This repository provides scripts to run TrOCR on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.image_to_text
- Model Stats:
- Model checkpoint: trocr-small-stage1
- Input resolution: 320x320
- Number of parameters (TrOCRDecoder): 38.3M
- Model size (TrOCRDecoder) (float): 146 MB
- Number of parameters (TrOCREncoder): 23.0M
- Model size (TrOCREncoder) (float): 87.8 MB
Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
TrOCRDecoder | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 4.222 ms | 0 - 72 MB | NPU | TrOCR.tflite |
TrOCRDecoder | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 4.012 ms | 5 - 66 MB | NPU | TrOCR.dlc |
TrOCRDecoder | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 2.632 ms | 0 - 132 MB | NPU | TrOCR.tflite |
TrOCRDecoder | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 2.82 ms | 4 - 130 MB | NPU | TrOCR.dlc |
TrOCRDecoder | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 2.066 ms | 0 - 214 MB | NPU | TrOCR.tflite |
TrOCRDecoder | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 2.023 ms | 1 - 26 MB | NPU | TrOCR.dlc |
TrOCRDecoder | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 2.886 ms | 0 - 72 MB | NPU | TrOCR.tflite |
TrOCRDecoder | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 2.808 ms | 5 - 67 MB | NPU | TrOCR.dlc |
TrOCRDecoder | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 4.222 ms | 0 - 72 MB | NPU | TrOCR.tflite |
TrOCRDecoder | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 4.012 ms | 5 - 66 MB | NPU | TrOCR.dlc |
TrOCRDecoder | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 2.081 ms | 0 - 215 MB | NPU | TrOCR.tflite |
TrOCRDecoder | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 2.013 ms | 1 - 26 MB | NPU | TrOCR.dlc |
TrOCRDecoder | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 3.157 ms | 0 - 64 MB | NPU | TrOCR.tflite |
TrOCRDecoder | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 2.997 ms | 0 - 58 MB | NPU | TrOCR.dlc |
TrOCRDecoder | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 2.06 ms | 0 - 224 MB | NPU | TrOCR.tflite |
TrOCRDecoder | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 2.093 ms | 1 - 27 MB | NPU | TrOCR.dlc |
TrOCRDecoder | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 2.886 ms | 0 - 72 MB | NPU | TrOCR.tflite |
TrOCRDecoder | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 2.808 ms | 5 - 67 MB | NPU | TrOCR.dlc |
TrOCRDecoder | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 2.114 ms | 0 - 244 MB | NPU | TrOCR.tflite |
TrOCRDecoder | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 2.082 ms | 2 - 26 MB | NPU | TrOCR.dlc |
TrOCRDecoder | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 2.561 ms | 0 - 178 MB | NPU | TrOCR.onnx.zip |
TrOCRDecoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1.541 ms | 0 - 148 MB | NPU | TrOCR.tflite |
TrOCRDecoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 1.464 ms | 0 - 141 MB | NPU | TrOCR.dlc |
TrOCRDecoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 1.847 ms | 0 - 144 MB | NPU | TrOCR.onnx.zip |
TrOCRDecoder | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 1.399 ms | 0 - 73 MB | NPU | TrOCR.tflite |
TrOCRDecoder | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 1.257 ms | 2 - 153 MB | NPU | TrOCR.dlc |
TrOCRDecoder | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 1.565 ms | 1 - 155 MB | NPU | TrOCR.onnx.zip |
TrOCRDecoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 2.151 ms | 654 - 654 MB | NPU | TrOCR.dlc |
TrOCRDecoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 2.325 ms | 68 - 68 MB | NPU | TrOCR.onnx.zip |
TrOCREncoder | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 48.039 ms | 7 - 115 MB | NPU | TrOCR.tflite |
TrOCREncoder | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 46.212 ms | 2 - 139 MB | NPU | TrOCR.dlc |
TrOCREncoder | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 25.412 ms | 7 - 128 MB | NPU | TrOCR.tflite |
TrOCREncoder | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 28.476 ms | 1 - 130 MB | NPU | TrOCR.dlc |
TrOCREncoder | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 17.742 ms | 7 - 23 MB | NPU | TrOCR.tflite |
TrOCREncoder | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 17.251 ms | 2 - 23 MB | NPU | TrOCR.dlc |
TrOCREncoder | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 20.329 ms | 3 - 111 MB | NPU | TrOCR.tflite |
TrOCREncoder | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 19.843 ms | 2 - 137 MB | NPU | TrOCR.dlc |
TrOCREncoder | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 48.039 ms | 7 - 115 MB | NPU | TrOCR.tflite |
TrOCREncoder | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 46.212 ms | 2 - 139 MB | NPU | TrOCR.dlc |
TrOCREncoder | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 17.733 ms | 7 - 26 MB | NPU | TrOCR.tflite |
TrOCREncoder | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 17.376 ms | 2 - 26 MB | NPU | TrOCR.dlc |
TrOCREncoder | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 28.15 ms | 7 - 119 MB | NPU | TrOCR.tflite |
TrOCREncoder | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 25.234 ms | 2 - 126 MB | NPU | TrOCR.dlc |
TrOCREncoder | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 17.794 ms | 7 - 24 MB | NPU | TrOCR.tflite |
TrOCREncoder | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 17.314 ms | 2 - 24 MB | NPU | TrOCR.dlc |
TrOCREncoder | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 20.329 ms | 3 - 111 MB | NPU | TrOCR.tflite |
TrOCREncoder | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 19.843 ms | 2 - 137 MB | NPU | TrOCR.dlc |
TrOCREncoder | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 17.804 ms | 7 - 25 MB | NPU | TrOCR.tflite |
TrOCREncoder | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 17.267 ms | 2 - 26 MB | NPU | TrOCR.dlc |
TrOCREncoder | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 39.748 ms | 0 - 145 MB | NPU | TrOCR.onnx.zip |
TrOCREncoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 12.3 ms | 6 - 117 MB | NPU | TrOCR.tflite |
TrOCREncoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 11.676 ms | 2 - 146 MB | NPU | TrOCR.dlc |
TrOCREncoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 31.985 ms | 15 - 173 MB | NPU | TrOCR.onnx.zip |
TrOCREncoder | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 10.719 ms | 6 - 118 MB | NPU | TrOCR.tflite |
TrOCREncoder | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 10.774 ms | 2 - 157 MB | NPU | TrOCR.dlc |
TrOCREncoder | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 27.188 ms | 15 - 198 MB | NPU | TrOCR.onnx.zip |
TrOCREncoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 18.031 ms | 211 - 211 MB | NPU | TrOCR.dlc |
TrOCREncoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 37.09 ms | 50 - 50 MB | NPU | TrOCR.onnx.zip |
Installation
Install the package via pip:
pip install "qai-hub-models[trocr]"
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.trocr.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.trocr.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.trocr.export
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace
and then call the submit_compile_job
API.
import torch
import qai_hub as hub
from qai_hub_models.models.trocr import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S24")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model
. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on TrOCR's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of TrOCR can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
- TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models
- Source Model Implementation
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
- Downloads last month
- 173