YOLOv8-Segmentation: Optimized for Mobile Deployment

Real-time object segmentation optimized for mobile and edge by Ultralytics

Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes, segmentation masks and classes of objects in an image.

This model is an implementation of YOLOv8-Segmentation found here.

More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.semantic_segmentation
  • Model Stats:
    • Model checkpoint: YOLOv8N-Seg
    • Input resolution: 640x640
    • Number of parameters: 3.43M
    • Number of output classes: 80
    • Model size (float): 13.2 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
YOLOv8-Segmentation float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 21.595 ms 4 - 45 MB NPU --
YOLOv8-Segmentation float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN 17.644 ms 3 - 13 MB NPU --
YOLOv8-Segmentation float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 11.836 ms 4 - 42 MB NPU --
YOLOv8-Segmentation float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN 11.091 ms 5 - 44 MB NPU --
YOLOv8-Segmentation float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 8.05 ms 4 - 24 MB NPU --
YOLOv8-Segmentation float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN 4.882 ms 5 - 8 MB NPU --
YOLOv8-Segmentation float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN 6.719 ms 2 - 16 MB NPU --
YOLOv8-Segmentation float SA7255P ADP Qualcomm® SA7255P TFLITE 21.595 ms 4 - 45 MB NPU --
YOLOv8-Segmentation float SA7255P ADP Qualcomm® SA7255P QNN 17.644 ms 3 - 13 MB NPU --
YOLOv8-Segmentation float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 8.177 ms 4 - 22 MB NPU --
YOLOv8-Segmentation float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN 4.881 ms 5 - 7 MB NPU --
YOLOv8-Segmentation float SA8295P ADP Qualcomm® SA8295P TFLITE 12.502 ms 4 - 31 MB NPU --
YOLOv8-Segmentation float SA8295P ADP Qualcomm® SA8295P QNN 9.114 ms 0 - 18 MB NPU --
YOLOv8-Segmentation float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 8.015 ms 4 - 24 MB NPU --
YOLOv8-Segmentation float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN 4.867 ms 5 - 7 MB NPU --
YOLOv8-Segmentation float SA8775P ADP Qualcomm® SA8775P QNN 6.719 ms 2 - 16 MB NPU --
YOLOv8-Segmentation float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile TFLITE 8.237 ms 4 - 21 MB NPU --
YOLOv8-Segmentation float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN 4.851 ms 5 - 23 MB NPU --
YOLOv8-Segmentation float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile ONNX 6.425 ms 14 - 49 MB NPU --
YOLOv8-Segmentation float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 5.936 ms 0 - 52 MB NPU --
YOLOv8-Segmentation float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN 3.591 ms 4 - 62 MB NPU --
YOLOv8-Segmentation float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 4.432 ms 15 - 81 MB NPU --
YOLOv8-Segmentation float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile TFLITE 4.797 ms 4 - 49 MB NPU --
YOLOv8-Segmentation float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN 3.3 ms 5 - 56 MB NPU --
YOLOv8-Segmentation float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile ONNX 3.66 ms 5 - 57 MB NPU --
YOLOv8-Segmentation float Snapdragon X Elite CRD Snapdragon® X Elite QNN 5.356 ms 5 - 5 MB NPU --
YOLOv8-Segmentation float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 7.294 ms 17 - 17 MB NPU --
YOLOv8-Segmentation w8a16 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN 9.004 ms 1 - 11 MB NPU --
YOLOv8-Segmentation w8a16 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN 6.582 ms 2 - 44 MB NPU --
YOLOv8-Segmentation w8a16 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN 4.673 ms 2 - 6 MB NPU --
YOLOv8-Segmentation w8a16 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN 5.279 ms 1 - 16 MB NPU --
YOLOv8-Segmentation w8a16 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) QNN 21.094 ms 2 - 14 MB NPU --
YOLOv8-Segmentation w8a16 SA7255P ADP Qualcomm® SA7255P QNN 9.004 ms 1 - 11 MB NPU --
YOLOv8-Segmentation w8a16 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN 4.695 ms 4 - 6 MB NPU --
YOLOv8-Segmentation w8a16 SA8295P ADP Qualcomm® SA8295P QNN 5.989 ms 0 - 18 MB NPU --
YOLOv8-Segmentation w8a16 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN 4.653 ms 2 - 5 MB NPU --
YOLOv8-Segmentation w8a16 SA8775P ADP Qualcomm® SA8775P QNN 5.279 ms 1 - 16 MB NPU --
YOLOv8-Segmentation w8a16 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN 4.663 ms 2 - 16 MB NPU --
YOLOv8-Segmentation w8a16 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile ONNX 7.503 ms 6 - 31 MB NPU --
YOLOv8-Segmentation w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN 3.04 ms 2 - 46 MB NPU --
YOLOv8-Segmentation w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 5.281 ms 9 - 65 MB NPU --
YOLOv8-Segmentation w8a16 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile ONNX 3.88 ms 1 - 49 MB NPU --
YOLOv8-Segmentation w8a16 Snapdragon X Elite CRD Snapdragon® X Elite QNN 5.118 ms 2 - 2 MB NPU --
YOLOv8-Segmentation w8a16 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 8.425 ms 15 - 15 MB NPU --

License

  • The license for the original implementation of YOLOv8-Segmentation can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Usage and Limitations

Model may not be used for or in connection with any of the following applications:

  • Accessing essential private and public services and benefits;
  • Administration of justice and democratic processes;
  • Assessing or recognizing the emotional state of a person;
  • Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
  • Education and vocational training;
  • Employment and workers management;
  • Exploitation of the vulnerabilities of persons resulting in harmful behavior;
  • General purpose social scoring;
  • Law enforcement;
  • Management and operation of critical infrastructure;
  • Migration, asylum and border control management;
  • Predictive policing;
  • Real-time remote biometric identification in public spaces;
  • Recommender systems of social media platforms;
  • Scraping of facial images (from the internet or otherwise); and/or
  • Subliminal manipulation
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support