Yolo-X: Optimized for Mobile Deployment
Real-time object detection optimized for mobile and edge
YoloX is a machine learning model that predicts bounding boxes and classes of objects in an image.
This model is an implementation of Yolo-X found here.
This repository provides scripts to run Yolo-X on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.object_detection
- Model Stats:
- Model checkpoint: YoloX Medium
- Input resolution: 640x640
- Number of parameters: 25.3M
- Model size (float): 96.7 MB
Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
Yolo-X | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 79.809 ms | 0 - 75 MB | NPU | Yolo-X.tflite |
Yolo-X | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 75.122 ms | 1 - 11 MB | NPU | Use Export Script |
Yolo-X | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 34.789 ms | 0 - 106 MB | NPU | Yolo-X.tflite |
Yolo-X | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN | 34.374 ms | 5 - 52 MB | NPU | Use Export Script |
Yolo-X | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 20.102 ms | 0 - 18 MB | NPU | Yolo-X.tflite |
Yolo-X | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 15.609 ms | 5 - 8 MB | NPU | Use Export Script |
Yolo-X | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 26.709 ms | 0 - 76 MB | NPU | Yolo-X.tflite |
Yolo-X | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 22.043 ms | 0 - 13 MB | NPU | Use Export Script |
Yolo-X | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 79.809 ms | 0 - 75 MB | NPU | Yolo-X.tflite |
Yolo-X | float | SA7255P ADP | Qualcomm® SA7255P | QNN | 75.122 ms | 1 - 11 MB | NPU | Use Export Script |
Yolo-X | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 20.353 ms | 0 - 16 MB | NPU | Yolo-X.tflite |
Yolo-X | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 15.579 ms | 5 - 7 MB | NPU | Use Export Script |
Yolo-X | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 37.164 ms | 0 - 68 MB | NPU | Yolo-X.tflite |
Yolo-X | float | SA8295P ADP | Qualcomm® SA8295P | QNN | 28.667 ms | 0 - 18 MB | NPU | Use Export Script |
Yolo-X | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 20.652 ms | 0 - 17 MB | NPU | Yolo-X.tflite |
Yolo-X | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 15.705 ms | 5 - 8 MB | NPU | Use Export Script |
Yolo-X | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 26.709 ms | 0 - 76 MB | NPU | Yolo-X.tflite |
Yolo-X | float | SA8775P ADP | Qualcomm® SA8775P | QNN | 22.043 ms | 0 - 13 MB | NPU | Use Export Script |
Yolo-X | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 20.57 ms | 0 - 16 MB | NPU | Yolo-X.tflite |
Yolo-X | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 15.753 ms | 5 - 22 MB | NPU | Use Export Script |
Yolo-X | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 20.337 ms | 1 - 151 MB | NPU | Yolo-X.onnx |
Yolo-X | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 15.229 ms | 0 - 111 MB | NPU | Yolo-X.tflite |
Yolo-X | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 12.042 ms | 5 - 54 MB | NPU | Use Export Script |
Yolo-X | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 15.441 ms | 5 - 69 MB | NPU | Yolo-X.onnx |
Yolo-X | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 13.711 ms | 0 - 79 MB | NPU | Yolo-X.tflite |
Yolo-X | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 9.209 ms | 5 - 51 MB | NPU | Use Export Script |
Yolo-X | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 14.343 ms | 5 - 59 MB | NPU | Yolo-X.onnx |
Yolo-X | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 15.95 ms | 5 - 5 MB | NPU | Use Export Script |
Yolo-X | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 20.752 ms | 46 - 46 MB | NPU | Yolo-X.onnx |
Yolo-X | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 24.942 ms | 2 - 12 MB | NPU | Use Export Script |
Yolo-X | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN | 15.586 ms | 2 - 84 MB | NPU | Use Export Script |
Yolo-X | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 10.29 ms | 2 - 6 MB | NPU | Use Export Script |
Yolo-X | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 10.703 ms | 1 - 16 MB | NPU | Use Export Script |
Yolo-X | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN | 53.241 ms | 2 - 16 MB | NPU | Use Export Script |
Yolo-X | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN | 24.942 ms | 2 - 12 MB | NPU | Use Export Script |
Yolo-X | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 10.449 ms | 2 - 5 MB | NPU | Use Export Script |
Yolo-X | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN | 14.409 ms | 0 - 17 MB | NPU | Use Export Script |
Yolo-X | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 10.548 ms | 3 - 5 MB | NPU | Use Export Script |
Yolo-X | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN | 10.703 ms | 1 - 16 MB | NPU | Use Export Script |
Yolo-X | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 10.461 ms | 2 - 17 MB | NPU | Use Export Script |
Yolo-X | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 18.693 ms | 1 - 48 MB | NPU | Yolo-X.onnx |
Yolo-X | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 6.951 ms | 2 - 80 MB | NPU | Use Export Script |
Yolo-X | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 13.603 ms | 2 - 103 MB | NPU | Yolo-X.onnx |
Yolo-X | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 5.952 ms | 2 - 73 MB | NPU | Use Export Script |
Yolo-X | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 14.152 ms | 4 - 90 MB | NPU | Yolo-X.onnx |
Yolo-X | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 11.179 ms | 2 - 2 MB | NPU | Use Export Script |
Yolo-X | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 20.376 ms | 24 - 24 MB | NPU | Yolo-X.onnx |
Installation
Install the package via pip:
pip install "qai-hub-models[yolox]"
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.yolox.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.yolox.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.yolox.export
Profiling Results
------------------------------------------------------------
Yolo-X
Device : cs_8275 (ANDROID 14)
Runtime : TFLITE
Estimated inference time (ms) : 79.8
Estimated peak memory usage (MB): [0, 75]
Total # Ops : 418
Compute Unit(s) : npu (418 ops) gpu (0 ops) cpu (0 ops)
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace
and then call the submit_compile_job
API.
import torch
import qai_hub as hub
from qai_hub_models.models.yolox import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S24")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model
. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.
Run demo on a cloud-hosted device
You can also run the demo on-device.
python -m qai_hub_models.models.yolox.demo --on-device
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.yolox.demo -- --on-device
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on Yolo-X's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of Yolo-X can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.