Yolo-v3: Optimized for Mobile Deployment
Real-time object detection optimized for mobile and edge
YoloV3 is a machine learning model that predicts bounding boxes and classes of objects in an image.
This model is an implementation of Yolo-v3 found here.
More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.object_detection
- Model Stats:
- Model checkpoint: YoloV3 Tiny
- Input resolution: 416p (416x416)
- Number of parameters: 8.85M
- Model size (float): 24.4 MB
Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
Yolo-v3 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 31.821 ms | 0 - 70 MB | NPU | -- |
Yolo-v3 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 22.278 ms | 3 - 12 MB | NPU | -- |
Yolo-v3 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 17.86 ms | 1 - 89 MB | NPU | -- |
Yolo-v3 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN | 12.774 ms | 5 - 36 MB | NPU | -- |
Yolo-v3 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 16.59 ms | 0 - 7 MB | NPU | -- |
Yolo-v3 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 8.368 ms | 5 - 7 MB | NPU | -- |
Yolo-v3 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 17.795 ms | 0 - 71 MB | NPU | -- |
Yolo-v3 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 16.54 ms | 0 - 7 MB | NPU | -- |
Yolo-v3 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 8.433 ms | 5 - 12 MB | NPU | -- |
Yolo-v3 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 12.956 ms | 6 - 63 MB | NPU | -- |
Yolo-v3 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 10.677 ms | 0 - 91 MB | NPU | -- |
Yolo-v3 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 6.124 ms | 5 - 40 MB | NPU | -- |
Yolo-v3 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 10.466 ms | 17 - 48 MB | NPU | -- |
Yolo-v3 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 8.356 ms | 0 - 73 MB | NPU | -- |
Yolo-v3 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 6.414 ms | 5 - 35 MB | NPU | -- |
Yolo-v3 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 11.476 ms | 17 - 45 MB | NPU | -- |
Yolo-v3 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 8.584 ms | 5 - 5 MB | NPU | -- |
Yolo-v3 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 14.745 ms | 5 - 5 MB | NPU | -- |
Yolo-v3 | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 13.995 ms | 2 - 11 MB | NPU | -- |
Yolo-v3 | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN | 9.475 ms | 2 - 52 MB | NPU | -- |
Yolo-v3 | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 6.414 ms | 2 - 4 MB | NPU | -- |
Yolo-v3 | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 6.85 ms | 2 - 16 MB | NPU | -- |
Yolo-v3 | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN | 20.205 ms | 2 - 16 MB | NPU | -- |
Yolo-v3 | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 6.431 ms | 2 - 13 MB | NPU | -- |
Yolo-v3 | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 12.205 ms | 6 - 54 MB | NPU | -- |
Yolo-v3 | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 4.726 ms | 2 - 49 MB | NPU | -- |
Yolo-v3 | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 8.938 ms | 11 - 51 MB | NPU | -- |
Yolo-v3 | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 4.104 ms | 2 - 31 MB | NPU | -- |
Yolo-v3 | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 9.928 ms | 9 - 33 MB | NPU | -- |
Yolo-v3 | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 7.002 ms | 2 - 2 MB | NPU | -- |
License
- The license for the original implementation of Yolo-v3 can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
Usage and Limitations
Model may not be used for or in connection with any of the following applications:
- Accessing essential private and public services and benefits;
- Administration of justice and democratic processes;
- Assessing or recognizing the emotional state of a person;
- Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
- Education and vocational training;
- Employment and workers management;
- Exploitation of the vulnerabilities of persons resulting in harmful behavior;
- General purpose social scoring;
- Law enforcement;
- Management and operation of critical infrastructure;
- Migration, asylum and border control management;
- Predictive policing;
- Real-time remote biometric identification in public spaces;
- Recommender systems of social media platforms;
- Scraping of facial images (from the internet or otherwise); and/or
- Subliminal manipulation
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support