v0.34.0
Browse filesSee https://github.com/quic/ai-hub-models/releases/v0.34.0 for changelog.
README.md
CHANGED
@@ -19,7 +19,11 @@ YoloV3 is a machine learning model that predicts bounding boxes and classes of o
|
|
19 |
This model is an implementation of Yolo-v3 found [here](https://github.com/ultralytics/yolov3/tree/v8).
|
20 |
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
23 |
|
24 |
### Model Details
|
25 |
|
@@ -33,40 +37,208 @@ This model is an implementation of Yolo-v3 found [here](https://github.com/ultra
|
|
33 |
|
34 |
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|
35 |
|---|---|---|---|---|---|---|---|---|
|
36 |
-
| Yolo-v3 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 31.
|
37 |
-
| Yolo-v3 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 21.753 ms |
|
38 |
-
| Yolo-v3 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE |
|
39 |
-
| Yolo-v3 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC |
|
40 |
-
| Yolo-v3 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 16.
|
41 |
-
| Yolo-v3 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 8.
|
42 |
-
| Yolo-v3 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 17.
|
43 |
-
| Yolo-v3 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 9.
|
44 |
-
| Yolo-v3 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 16.
|
45 |
-
| Yolo-v3 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 8.
|
46 |
-
| Yolo-v3 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 9.
|
47 |
-
| Yolo-v3 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 10.
|
48 |
-
| Yolo-v3 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 5.
|
49 |
-
| Yolo-v3 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 6.
|
50 |
-
| Yolo-v3 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 8.
|
51 |
-
| Yolo-v3 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 6.
|
52 |
-
| Yolo-v3 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 6.
|
53 |
-
| Yolo-v3 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC |
|
54 |
-
| Yolo-v3 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 9.
|
55 |
-
| Yolo-v3 | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 13.
|
56 |
-
| Yolo-v3 | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 8.
|
57 |
-
| Yolo-v3 | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC |
|
58 |
-
| Yolo-v3 | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 6.
|
59 |
-
| Yolo-v3 | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 19.
|
60 |
-
| Yolo-v3 | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC |
|
61 |
-
| Yolo-v3 | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX |
|
62 |
-
| Yolo-v3 | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 4.
|
63 |
-
| Yolo-v3 | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 5.
|
64 |
-
| Yolo-v3 | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 4.
|
65 |
-
| Yolo-v3 | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 6.
|
66 |
-
| Yolo-v3 | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 7.
|
67 |
-
| Yolo-v3 | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 9.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
|
|
|
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
|
72 |
## License
|
@@ -83,26 +255,7 @@ This model is an implementation of Yolo-v3 found [here](https://github.com/ultra
|
|
83 |
|
84 |
|
85 |
## Community
|
86 |
-
* Join [our AI Hub Slack community](https://qualcomm
|
87 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
Model may not be used for or in connection with any of the following applications:
|
92 |
-
|
93 |
-
- Accessing essential private and public services and benefits;
|
94 |
-
- Administration of justice and democratic processes;
|
95 |
-
- Assessing or recognizing the emotional state of a person;
|
96 |
-
- Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
|
97 |
-
- Education and vocational training;
|
98 |
-
- Employment and workers management;
|
99 |
-
- Exploitation of the vulnerabilities of persons resulting in harmful behavior;
|
100 |
-
- General purpose social scoring;
|
101 |
-
- Law enforcement;
|
102 |
-
- Management and operation of critical infrastructure;
|
103 |
-
- Migration, asylum and border control management;
|
104 |
-
- Predictive policing;
|
105 |
-
- Real-time remote biometric identification in public spaces;
|
106 |
-
- Recommender systems of social media platforms;
|
107 |
-
- Scraping of facial images (from the internet or otherwise); and/or
|
108 |
-
- Subliminal manipulation
|
|
|
19 |
This model is an implementation of Yolo-v3 found [here](https://github.com/ultralytics/yolov3/tree/v8).
|
20 |
|
21 |
|
22 |
+
This repository provides scripts to run Yolo-v3 on Qualcomm® devices.
|
23 |
+
More details on model performance across various devices, can be found
|
24 |
+
[here](https://aihub.qualcomm.com/models/yolov3).
|
25 |
+
|
26 |
+
**WARNING**: The model assets are not readily available for download due to licensing restrictions.
|
27 |
|
28 |
### Model Details
|
29 |
|
|
|
37 |
|
38 |
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|
39 |
|---|---|---|---|---|---|---|---|---|
|
40 |
+
| Yolo-v3 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 31.64 ms | 0 - 77 MB | NPU | -- |
|
41 |
+
| Yolo-v3 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 21.753 ms | 1 - 90 MB | NPU | -- |
|
42 |
+
| Yolo-v3 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 18.564 ms | 0 - 88 MB | NPU | -- |
|
43 |
+
| Yolo-v3 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 11.953 ms | 5 - 79 MB | NPU | -- |
|
44 |
+
| Yolo-v3 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 16.595 ms | 0 - 9 MB | NPU | -- |
|
45 |
+
| Yolo-v3 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 8.149 ms | 5 - 23 MB | NPU | -- |
|
46 |
+
| Yolo-v3 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 17.628 ms | 0 - 76 MB | NPU | -- |
|
47 |
+
| Yolo-v3 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 9.719 ms | 1 - 88 MB | NPU | -- |
|
48 |
+
| Yolo-v3 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 16.536 ms | 0 - 14 MB | NPU | -- |
|
49 |
+
| Yolo-v3 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 8.138 ms | 5 - 22 MB | NPU | -- |
|
50 |
+
| Yolo-v3 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 9.136 ms | 0 - 66 MB | NPU | -- |
|
51 |
+
| Yolo-v3 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 10.72 ms | 0 - 99 MB | NPU | -- |
|
52 |
+
| Yolo-v3 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 5.873 ms | 5 - 96 MB | NPU | -- |
|
53 |
+
| Yolo-v3 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 6.764 ms | 5 - 113 MB | NPU | -- |
|
54 |
+
| Yolo-v3 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 8.098 ms | 0 - 80 MB | NPU | -- |
|
55 |
+
| Yolo-v3 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 6.025 ms | 5 - 103 MB | NPU | -- |
|
56 |
+
| Yolo-v3 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 6.989 ms | 5 - 94 MB | NPU | -- |
|
57 |
+
| Yolo-v3 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 8.972 ms | 1 - 1 MB | NPU | -- |
|
58 |
+
| Yolo-v3 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 9.189 ms | 22 - 22 MB | NPU | -- |
|
59 |
+
| Yolo-v3 | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 13.032 ms | 2 - 68 MB | NPU | -- |
|
60 |
+
| Yolo-v3 | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 8.556 ms | 2 - 88 MB | NPU | -- |
|
61 |
+
| Yolo-v3 | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 5.869 ms | 2 - 25 MB | NPU | -- |
|
62 |
+
| Yolo-v3 | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 6.324 ms | 2 - 71 MB | NPU | -- |
|
63 |
+
| Yolo-v3 | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 19.682 ms | 2 - 78 MB | NPU | -- |
|
64 |
+
| Yolo-v3 | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 5.884 ms | 2 - 23 MB | NPU | -- |
|
65 |
+
| Yolo-v3 | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 9.031 ms | 0 - 58 MB | NPU | -- |
|
66 |
+
| Yolo-v3 | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 4.308 ms | 2 - 88 MB | NPU | -- |
|
67 |
+
| Yolo-v3 | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 5.998 ms | 2 - 106 MB | NPU | -- |
|
68 |
+
| Yolo-v3 | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 4.432 ms | 2 - 73 MB | NPU | -- |
|
69 |
+
| Yolo-v3 | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 6.155 ms | 2 - 99 MB | NPU | -- |
|
70 |
+
| Yolo-v3 | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 7.187 ms | 54 - 54 MB | NPU | -- |
|
71 |
+
| Yolo-v3 | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 9.102 ms | 15 - 15 MB | NPU | -- |
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
## Installation
|
77 |
+
|
78 |
+
|
79 |
+
Install the package via pip:
|
80 |
+
```bash
|
81 |
+
pip install "qai-hub-models[yolov3]"
|
82 |
+
```
|
83 |
+
|
84 |
+
|
85 |
+
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
|
86 |
+
|
87 |
+
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
|
88 |
+
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
|
89 |
+
|
90 |
+
With this API token, you can configure your client to run models on the cloud
|
91 |
+
hosted devices.
|
92 |
+
```bash
|
93 |
+
qai-hub configure --api_token API_TOKEN
|
94 |
+
```
|
95 |
+
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
## Demo off target
|
100 |
+
|
101 |
+
The package contains a simple end-to-end demo that downloads pre-trained
|
102 |
+
weights and runs this model on a sample input.
|
103 |
+
|
104 |
+
```bash
|
105 |
+
python -m qai_hub_models.models.yolov3.demo
|
106 |
+
```
|
107 |
+
|
108 |
+
The above demo runs a reference implementation of pre-processing, model
|
109 |
+
inference, and post processing.
|
110 |
+
|
111 |
+
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
|
112 |
+
environment, please add the following to your cell (instead of the above).
|
113 |
+
```
|
114 |
+
%run -m qai_hub_models.models.yolov3.demo
|
115 |
+
```
|
116 |
+
|
117 |
+
|
118 |
+
### Run model on a cloud-hosted device
|
119 |
+
|
120 |
+
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
|
121 |
+
device. This script does the following:
|
122 |
+
* Performance check on-device on a cloud-hosted device
|
123 |
+
* Downloads compiled assets that can be deployed on-device for Android.
|
124 |
+
* Accuracy check between PyTorch and on-device outputs.
|
125 |
+
|
126 |
+
```bash
|
127 |
+
python -m qai_hub_models.models.yolov3.export
|
128 |
+
```
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
## How does this work?
|
133 |
+
|
134 |
+
This [export script](https://aihub.qualcomm.com/models/yolov3/qai_hub_models/models/Yolo-v3/export.py)
|
135 |
+
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
136 |
+
on-device. Lets go through each step below in detail:
|
137 |
+
|
138 |
+
Step 1: **Compile model for on-device deployment**
|
139 |
+
|
140 |
+
To compile a PyTorch model for on-device deployment, we first trace the model
|
141 |
+
in memory using the `jit.trace` and then call the `submit_compile_job` API.
|
142 |
+
|
143 |
+
```python
|
144 |
+
import torch
|
145 |
|
146 |
+
import qai_hub as hub
|
147 |
+
from qai_hub_models.models.yolov3 import Model
|
148 |
|
149 |
+
# Load the model
|
150 |
+
torch_model = Model.from_pretrained()
|
151 |
+
|
152 |
+
# Device
|
153 |
+
device = hub.Device("Samsung Galaxy S24")
|
154 |
+
|
155 |
+
# Trace model
|
156 |
+
input_shape = torch_model.get_input_spec()
|
157 |
+
sample_inputs = torch_model.sample_inputs()
|
158 |
+
|
159 |
+
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
|
160 |
+
|
161 |
+
# Compile model on a specific device
|
162 |
+
compile_job = hub.submit_compile_job(
|
163 |
+
model=pt_model,
|
164 |
+
device=device,
|
165 |
+
input_specs=torch_model.get_input_spec(),
|
166 |
+
)
|
167 |
+
|
168 |
+
# Get target model to run on-device
|
169 |
+
target_model = compile_job.get_target_model()
|
170 |
+
|
171 |
+
```
|
172 |
+
|
173 |
+
|
174 |
+
Step 2: **Performance profiling on cloud-hosted device**
|
175 |
+
|
176 |
+
After compiling models from step 1. Models can be profiled model on-device using the
|
177 |
+
`target_model`. Note that this scripts runs the model on a device automatically
|
178 |
+
provisioned in the cloud. Once the job is submitted, you can navigate to a
|
179 |
+
provided job URL to view a variety of on-device performance metrics.
|
180 |
+
```python
|
181 |
+
profile_job = hub.submit_profile_job(
|
182 |
+
model=target_model,
|
183 |
+
device=device,
|
184 |
+
)
|
185 |
+
|
186 |
+
```
|
187 |
+
|
188 |
+
Step 3: **Verify on-device accuracy**
|
189 |
+
|
190 |
+
To verify the accuracy of the model on-device, you can run on-device inference
|
191 |
+
on sample input data on the same cloud hosted device.
|
192 |
+
```python
|
193 |
+
input_data = torch_model.sample_inputs()
|
194 |
+
inference_job = hub.submit_inference_job(
|
195 |
+
model=target_model,
|
196 |
+
device=device,
|
197 |
+
inputs=input_data,
|
198 |
+
)
|
199 |
+
on_device_output = inference_job.download_output_data()
|
200 |
+
|
201 |
+
```
|
202 |
+
With the output of the model, you can compute like PSNR, relative errors or
|
203 |
+
spot check the output with expected output.
|
204 |
+
|
205 |
+
**Note**: This on-device profiling and inference requires access to Qualcomm®
|
206 |
+
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
207 |
+
|
208 |
+
|
209 |
+
|
210 |
+
## Run demo on a cloud-hosted device
|
211 |
+
|
212 |
+
You can also run the demo on-device.
|
213 |
+
|
214 |
+
```bash
|
215 |
+
python -m qai_hub_models.models.yolov3.demo --eval-mode on-device
|
216 |
+
```
|
217 |
+
|
218 |
+
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
|
219 |
+
environment, please add the following to your cell (instead of the above).
|
220 |
+
```
|
221 |
+
%run -m qai_hub_models.models.yolov3.demo -- --eval-mode on-device
|
222 |
+
```
|
223 |
+
|
224 |
+
|
225 |
+
## Deploying compiled model to Android
|
226 |
+
|
227 |
+
|
228 |
+
The models can be deployed using multiple runtimes:
|
229 |
+
- TensorFlow Lite (`.tflite` export): [This
|
230 |
+
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
|
231 |
+
guide to deploy the .tflite model in an Android application.
|
232 |
+
|
233 |
+
|
234 |
+
- QNN (`.so` export ): This [sample
|
235 |
+
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
|
236 |
+
provides instructions on how to use the `.so` shared library in an Android application.
|
237 |
+
|
238 |
+
|
239 |
+
## View on Qualcomm® AI Hub
|
240 |
+
Get more details on Yolo-v3's performance across various devices [here](https://aihub.qualcomm.com/models/yolov3).
|
241 |
+
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
242 |
|
243 |
|
244 |
## License
|
|
|
255 |
|
256 |
|
257 |
## Community
|
258 |
+
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
259 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|
260 |
|
261 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|