Yolo-v5: Optimized for Mobile Deployment
Real-time object detection optimized for mobile and edge
YoloV5 is a machine learning model that predicts bounding boxes and classes of objects in an image.
This model is an implementation of Yolo-v5 found here.
More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.object_detection
- Model Stats:
- Model checkpoint: YoloV5-M
- Input resolution: 640x640
- Number of parameters: 21.2M
- Model size: 81.1 MB
Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
Yolo-v5 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 72.14 ms | 6 - 80 MB | NPU | -- |
Yolo-v5 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 68.075 ms | 5 - 14 MB | NPU | -- |
Yolo-v5 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 34.651 ms | 6 - 89 MB | NPU | -- |
Yolo-v5 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN | 36.312 ms | 5 - 62 MB | NPU | -- |
Yolo-v5 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 22.966 ms | 2 - 33 MB | NPU | -- |
Yolo-v5 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 20.866 ms | 5 - 7 MB | NPU | -- |
Yolo-v5 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 28.852 ms | 6 - 81 MB | NPU | -- |
Yolo-v5 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 26.821 ms | 2 - 16 MB | NPU | -- |
Yolo-v5 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 22.986 ms | 6 - 38 MB | NPU | -- |
Yolo-v5 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 20.976 ms | 5 - 39 MB | NPU | -- |
Yolo-v5 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 22.89 ms | 0 - 129 MB | NPU | -- |
Yolo-v5 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 17.667 ms | 6 - 102 MB | NPU | -- |
Yolo-v5 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 16.032 ms | 5 - 131 MB | NPU | -- |
Yolo-v5 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 18.424 ms | 3 - 143 MB | NPU | -- |
Yolo-v5 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 16.178 ms | 5 - 82 MB | NPU | -- |
Yolo-v5 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 14.722 ms | 5 - 129 MB | NPU | -- |
Yolo-v5 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 14.412 ms | 5 - 131 MB | NPU | -- |
Yolo-v5 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 20.698 ms | 5 - 5 MB | NPU | -- |
Yolo-v5 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 25.831 ms | 40 - 40 MB | NPU | -- |
Yolo-v5 | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 25.42 ms | 2 - 12 MB | NPU | -- |
Yolo-v5 | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN | 17.15 ms | 2 - 78 MB | NPU | -- |
Yolo-v5 | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 12.45 ms | 2 - 6 MB | NPU | -- |
Yolo-v5 | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 12.806 ms | 2 - 16 MB | NPU | -- |
Yolo-v5 | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN | 54.829 ms | 2 - 14 MB | NPU | -- |
Yolo-v5 | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 12.496 ms | 4 - 30 MB | NPU | -- |
Yolo-v5 | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 18.605 ms | 1 - 66 MB | NPU | -- |
Yolo-v5 | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 8.29 ms | 2 - 83 MB | NPU | -- |
Yolo-v5 | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 12.978 ms | 0 - 173 MB | NPU | -- |
Yolo-v5 | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 6.145 ms | 2 - 73 MB | NPU | -- |
Yolo-v5 | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 9.811 ms | 1 - 157 MB | NPU | -- |
Yolo-v5 | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 13.327 ms | 2 - 2 MB | NPU | -- |
Yolo-v5 | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 22.077 ms | 20 - 20 MB | NPU | -- |
License
- The license for the original implementation of Yolo-v5 can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
Usage and Limitations
Model may not be used for or in connection with any of the following applications:
- Accessing essential private and public services and benefits;
- Administration of justice and democratic processes;
- Assessing or recognizing the emotional state of a person;
- Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
- Education and vocational training;
- Employment and workers management;
- Exploitation of the vulnerabilities of persons resulting in harmful behavior;
- General purpose social scoring;
- Law enforcement;
- Management and operation of critical infrastructure;
- Migration, asylum and border control management;
- Predictive policing;
- Real-time remote biometric identification in public spaces;
- Recommender systems of social media platforms;
- Scraping of facial images (from the internet or otherwise); and/or
- Subliminal manipulation
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support