SFTvit5-large_sum-10k_23Feb-2025

This model is a fine-tuned version of VietAI/vit5-large-vietnews-summarization on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4682
  • Rouge1: 0.2555
  • Rouge2: 0.177
  • Rougel: 0.216
  • Rougelsum: 0.2159
  • Gen Len: 19.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 0.9978 168 0.5023 0.2519 0.1711 0.2119 0.2118 19.0
No log 1.9955 336 0.4599 0.254 0.1739 0.2142 0.2141 19.0
No log 2.9993 505 0.4481 0.2554 0.1767 0.2166 0.2165 19.0
No log 3.9970 673 0.4485 0.2561 0.1771 0.2161 0.216 19.0
No log 4.9948 841 0.4508 0.2544 0.176 0.2154 0.2153 19.0
1.139 5.9985 1010 0.4544 0.2548 0.1767 0.2158 0.2158 19.0
1.139 6.9963 1178 0.4562 0.256 0.1789 0.2171 0.217 19.0
1.139 8.0 1347 0.4632 0.2558 0.1776 0.2164 0.2163 19.0
1.139 8.9978 1515 0.4668 0.2555 0.1773 0.2163 0.2163 19.0
1.139 9.9777 1680 0.4682 0.2555 0.177 0.216 0.2159 19.0

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
9
Safetensors
Model size
791M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for quancute/SFTvit5-large_sum-10k_23Feb-2025

Finetuned
(5)
this model