SFTvit5-large_sum-10k_23Feb-2025
This model is a fine-tuned version of VietAI/vit5-large-vietnews-summarization on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4682
- Rouge1: 0.2555
- Rouge2: 0.177
- Rougel: 0.216
- Rougelsum: 0.2159
- Gen Len: 19.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
No log | 0.9978 | 168 | 0.5023 | 0.2519 | 0.1711 | 0.2119 | 0.2118 | 19.0 |
No log | 1.9955 | 336 | 0.4599 | 0.254 | 0.1739 | 0.2142 | 0.2141 | 19.0 |
No log | 2.9993 | 505 | 0.4481 | 0.2554 | 0.1767 | 0.2166 | 0.2165 | 19.0 |
No log | 3.9970 | 673 | 0.4485 | 0.2561 | 0.1771 | 0.2161 | 0.216 | 19.0 |
No log | 4.9948 | 841 | 0.4508 | 0.2544 | 0.176 | 0.2154 | 0.2153 | 19.0 |
1.139 | 5.9985 | 1010 | 0.4544 | 0.2548 | 0.1767 | 0.2158 | 0.2158 | 19.0 |
1.139 | 6.9963 | 1178 | 0.4562 | 0.256 | 0.1789 | 0.2171 | 0.217 | 19.0 |
1.139 | 8.0 | 1347 | 0.4632 | 0.2558 | 0.1776 | 0.2164 | 0.2163 | 19.0 |
1.139 | 8.9978 | 1515 | 0.4668 | 0.2555 | 0.1773 | 0.2163 | 0.2163 | 19.0 |
1.139 | 9.9777 | 1680 | 0.4682 | 0.2555 | 0.177 | 0.216 | 0.2159 | 19.0 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.1
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for quancute/SFTvit5-large_sum-10k_23Feb-2025
Base model
VietAI/vit5-large-vietnews-summarization