bert-base-finetuned-ner-covidmed-v1
This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2262
- Accuracy: 0.9367
- Precision: 0.7019
- Recall: 0.7300
- F1: 0.7142
- Age Precision: 0.8702
- Age Recall: 0.9330
- Age F1-score: 0.9005
- Date Precision: 0.9634
- Date Recall: 0.9867
- Date F1-score: 0.9749
- Gender Precision: 0.9176
- Gender Recall: 0.9156
- Gender F1-score: 0.9166
- Job Precision: 0.0
- Job Recall: 0.0
- Job F1-score: 0.0
- Location Precision: 0.6959
- Location Recall: 0.8248
- Location F1-score: 0.7549
- Name Precision: 0.8392
- Name Recall: 0.7547
- Name F1-score: 0.7947
- Organization Precision: 0.4731
- Organization Recall: 0.5707
- Organization F1-score: 0.5173
- Patient Id Precision: 0.9118
- Patient Id Recall: 0.9800
- Patient Id F1-score: 0.9447
- Symptom And Disease Precision: 0.6037
- Symptom And Disease Recall: 0.6558
- Symptom And Disease F1-score: 0.6287
- Transportation Precision: 0.7443
- Transportation Recall: 0.6788
- Transportation F1-score: 0.7100
- Micro avg Precision: 0.7624
- Micro avg Recall: 0.8336
- Micro avg F1-score: 0.7964
- Macro avg Precision: 0.7019
- Macro avg Recall: 0.7300
- Macro avg F1-score: 0.7142
- Weighted avg Precision: 0.7587
- Weighted avg Recall: 0.8336
- Weighted avg F1-score: 0.7933
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Age Precision | Age Recall | Age F1-score | Date Precision | Date Recall | Date F1-score | Gender Precision | Gender Recall | Gender F1-score | Job Precision | Job Recall | Job F1-score | Location Precision | Location Recall | Location F1-score | Name Precision | Name Recall | Name F1-score | Organization Precision | Organization Recall | Organization F1-score | Patient Id Precision | Patient Id Recall | Patient Id F1-score | Symptom And Disease Precision | Symptom And Disease Recall | Symptom And Disease F1-score | Transportation Precision | Transportation Recall | Transportation F1-score | Micro avg Precision | Micro avg Recall | Micro avg F1-score | Macro avg Precision | Macro avg Recall | Macro avg F1-score | Weighted avg Precision | Weighted avg Recall | Weighted avg F1-score |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 79 | 0.5024 | 0.8639 | 0.6561 | 0.4363 | 0.4634 | 0.9443 | 0.8746 | 0.9081 | 0.9400 | 0.9655 | 0.9526 | 1.0 | 0.2771 | 0.4339 | 0.0 | 0.0 | 0.0 | 0.4307 | 0.6375 | 0.5141 | 0.9429 | 0.2075 | 0.3402 | 0.0513 | 0.0480 | 0.0496 | 0.7917 | 0.9611 | 0.8682 | 0.6190 | 0.0343 | 0.0651 | 0.8415 | 0.3575 | 0.5018 | 0.5852 | 0.6138 | 0.5992 | 0.6561 | 0.4363 | 0.4634 | 0.6196 | 0.6138 | 0.5663 |
No log | 2.0 | 158 | 0.3189 | 0.9131 | 0.6696 | 0.6437 | 0.6511 | 0.8650 | 0.9244 | 0.8937 | 0.9514 | 0.9831 | 0.9670 | 0.9400 | 0.8485 | 0.8919 | 0.0 | 0.0 | 0.0 | 0.6218 | 0.7494 | 0.6797 | 0.8724 | 0.6667 | 0.7558 | 0.3357 | 0.3671 | 0.3507 | 0.8595 | 0.9796 | 0.9156 | 0.4774 | 0.3900 | 0.4293 | 0.7727 | 0.5285 | 0.6277 | 0.7093 | 0.7574 | 0.7325 | 0.6696 | 0.6437 | 0.6511 | 0.7008 | 0.7574 | 0.7248 |
No log | 3.0 | 237 | 0.2561 | 0.9275 | 0.6876 | 0.7095 | 0.6960 | 0.8696 | 0.9278 | 0.8978 | 0.9594 | 0.9861 | 0.9726 | 0.9246 | 0.9026 | 0.9135 | 0.0 | 0.0 | 0.0 | 0.6650 | 0.8109 | 0.7307 | 0.8514 | 0.7390 | 0.7912 | 0.4282 | 0.4916 | 0.4577 | 0.9007 | 0.9776 | 0.9376 | 0.5166 | 0.6171 | 0.5624 | 0.7607 | 0.6425 | 0.6966 | 0.7351 | 0.8170 | 0.7739 | 0.6876 | 0.7095 | 0.6960 | 0.7340 | 0.8170 | 0.7717 |
No log | 4.0 | 316 | 0.2359 | 0.9326 | 0.6836 | 0.7298 | 0.7037 | 0.8428 | 0.9399 | 0.8887 | 0.9622 | 0.9855 | 0.9737 | 0.8983 | 0.9177 | 0.9079 | 0.0 | 0.0 | 0.0 | 0.6744 | 0.8217 | 0.7408 | 0.8362 | 0.7547 | 0.7934 | 0.4479 | 0.5577 | 0.4968 | 0.9051 | 0.9796 | 0.9408 | 0.5280 | 0.6725 | 0.5916 | 0.7414 | 0.6684 | 0.7030 | 0.7367 | 0.8331 | 0.7820 | 0.6836 | 0.7298 | 0.7037 | 0.7380 | 0.8331 | 0.7811 |
No log | 5.0 | 395 | 0.2262 | 0.9367 | 0.7019 | 0.7300 | 0.7142 | 0.8702 | 0.9330 | 0.9005 | 0.9634 | 0.9867 | 0.9749 | 0.9176 | 0.9156 | 0.9166 | 0.0 | 0.0 | 0.0 | 0.6959 | 0.8248 | 0.7549 | 0.8392 | 0.7547 | 0.7947 | 0.4731 | 0.5707 | 0.5173 | 0.9118 | 0.9800 | 0.9447 | 0.6037 | 0.6558 | 0.6287 | 0.7443 | 0.6788 | 0.7100 | 0.7624 | 0.8336 | 0.7964 | 0.7019 | 0.7300 | 0.7142 | 0.7587 | 0.8336 | 0.7933 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 16
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for quanxuantruong/bert-base-finetuned-ner-covidmed-v1
Base model
google-bert/bert-base-uncased