bert-base-finetuned-ner-covidmed-v2

This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2063
  • Accuracy: 0.9462
  • Precision: 0.7743
  • Recall: 0.7764
  • F1: 0.7662
  • Age Precision: 0.8797
  • Age Recall: 0.9553
  • Age F1-score: 0.9160
  • Date Precision: 0.9645
  • Date Recall: 0.9867
  • Date F1-score: 0.9755
  • Gender Precision: 0.9151
  • Gender Recall: 0.9329
  • Gender F1-score: 0.9239
  • Job Precision: 0.4643
  • Job Recall: 0.1503
  • Job F1-score: 0.2271
  • Location Precision: 0.7505
  • Location Recall: 0.8372
  • Location F1-score: 0.7915
  • Name Precision: 0.8225
  • Name Recall: 0.7579
  • Name F1-score: 0.7889
  • Organization Precision: 0.5831
  • Organization Recall: 0.6822
  • Organization F1-score: 0.6288
  • Patient Id Precision: 0.9330
  • Patient Id Recall: 0.9800
  • Patient Id F1-score: 0.9560
  • Symptom And Disease Precision: 0.6264
  • Symptom And Disease Recall: 0.6937
  • Symptom And Disease F1-score: 0.6583
  • Transportation Precision: 0.8042
  • Transportation Recall: 0.7876
  • Transportation F1-score: 0.7958
  • Micro avg Precision: 0.7994
  • Micro avg Recall: 0.8551
  • Micro avg F1-score: 0.8263
  • Macro avg Precision: 0.7743
  • Macro avg Recall: 0.7764
  • Macro avg F1-score: 0.7662
  • Weighted avg Precision: 0.8004
  • Weighted avg Recall: 0.8551
  • Weighted avg F1-score: 0.8250

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Age Precision Age Recall Age F1-score Date Precision Date Recall Date F1-score Gender Precision Gender Recall Gender F1-score Job Precision Job Recall Job F1-score Location Precision Location Recall Location F1-score Name Precision Name Recall Name F1-score Organization Precision Organization Recall Organization F1-score Patient Id Precision Patient Id Recall Patient Id F1-score Symptom And Disease Precision Symptom And Disease Recall Symptom And Disease F1-score Transportation Precision Transportation Recall Transportation F1-score Micro avg Precision Micro avg Recall Micro avg F1-score Macro avg Precision Macro avg Recall Macro avg F1-score Weighted avg Precision Weighted avg Recall Weighted avg F1-score
No log 1.0 79 0.5109 0.8608 0.6258 0.4426 0.4738 0.9455 0.8643 0.9031 0.9407 0.9692 0.9547 1.0 0.4026 0.5741 0.0 0.0 0.0 0.4126 0.6039 0.4903 0.9479 0.2862 0.4396 0.0620 0.0506 0.0557 0.7840 0.9666 0.8658 0.2288 0.0546 0.0881 0.9362 0.2280 0.3667 0.5747 0.6091 0.5914 0.6258 0.4426 0.4738 0.5763 0.6091 0.5655
No log 2.0 158 0.3149 0.9142 0.6666 0.6617 0.6599 0.8715 0.9210 0.8956 0.9433 0.9752 0.9590 0.9499 0.8615 0.9035 0.0 0.0 0.0 0.6003 0.7613 0.6713 0.8434 0.7453 0.7913 0.3226 0.3774 0.3479 0.8531 0.9791 0.9118 0.4833 0.4208 0.4499 0.7986 0.5751 0.6687 0.6936 0.7676 0.7287 0.6666 0.6617 0.6599 0.6905 0.7676 0.7238
No log 3.0 237 0.2443 0.9324 0.7024 0.7168 0.7082 0.8834 0.9244 0.9034 0.9594 0.9867 0.9729 0.9368 0.8983 0.9171 0.0 0.0 0.0 0.6713 0.8095 0.7340 0.8293 0.7484 0.7868 0.4736 0.5110 0.4916 0.9115 0.9761 0.9427 0.5902 0.625 0.6071 0.7688 0.6891 0.7268 0.7539 0.8191 0.7851 0.7024 0.7168 0.7082 0.7491 0.8191 0.7812
No log 4.0 316 0.2329 0.9347 0.6945 0.7329 0.7118 0.8716 0.9450 0.9068 0.9640 0.9867 0.9752 0.9194 0.9134 0.9164 0.0 0.0 0.0 0.6822 0.8325 0.7499 0.8253 0.7579 0.7902 0.5069 0.5227 0.5147 0.9277 0.9786 0.9524 0.5454 0.6822 0.6062 0.7026 0.7098 0.7062 0.7541 0.8367 0.7933 0.6945 0.7329 0.7118 0.7520 0.8367 0.7905
No log 5.0 395 0.2173 0.9419 0.7434 0.7682 0.7441 0.8366 0.9674 0.8972 0.9634 0.9867 0.9749 0.8912 0.9394 0.9146 0.4186 0.1040 0.1667 0.7247 0.8298 0.7737 0.8114 0.7579 0.7837 0.5401 0.6719 0.5988 0.9129 0.9830 0.9467 0.5894 0.6963 0.6384 0.7461 0.7461 0.7461 0.7730 0.8519 0.8106 0.7434 0.7682 0.7441 0.7756 0.8519 0.8096
No log 6.0 474 0.2085 0.9443 0.7635 0.7745 0.7595 0.8719 0.9588 0.9133 0.9640 0.9867 0.9752 0.9153 0.9351 0.9251 0.4340 0.1329 0.2035 0.7369 0.8356 0.7832 0.8225 0.7579 0.7889 0.5739 0.6900 0.6266 0.9282 0.9800 0.9534 0.6085 0.6963 0.6494 0.7801 0.7720 0.7760 0.7887 0.8550 0.8205 0.7635 0.7745 0.7595 0.7907 0.8550 0.8196
0.2745 7.0 553 0.2063 0.9462 0.7743 0.7764 0.7662 0.8797 0.9553 0.9160 0.9645 0.9867 0.9755 0.9151 0.9329 0.9239 0.4643 0.1503 0.2271 0.7505 0.8372 0.7915 0.8225 0.7579 0.7889 0.5831 0.6822 0.6288 0.9330 0.9800 0.9560 0.6264 0.6937 0.6583 0.8042 0.7876 0.7958 0.7994 0.8551 0.8263 0.7743 0.7764 0.7662 0.8004 0.8551 0.8250

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
16
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for quanxuantruong/bert-base-finetuned-ner-covidmed-v2

Finetuned
(5519)
this model