quanxuantruong commited on
Commit
2c2ec4a
·
verified ·
1 Parent(s): 081eb2e

Model save

Browse files
README.md ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: google-bert/bert-base-uncased
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ - precision
10
+ - recall
11
+ - f1
12
+ model-index:
13
+ - name: bert-base-finetuned-ner-covidmed-v2
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # bert-base-finetuned-ner-covidmed-v2
21
+
22
+ This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.2063
25
+ - Accuracy: 0.9462
26
+ - Precision: 0.7743
27
+ - Recall: 0.7764
28
+ - F1: 0.7662
29
+ - Age Precision: 0.8797
30
+ - Age Recall: 0.9553
31
+ - Age F1-score: 0.9160
32
+ - Date Precision: 0.9645
33
+ - Date Recall: 0.9867
34
+ - Date F1-score: 0.9755
35
+ - Gender Precision: 0.9151
36
+ - Gender Recall: 0.9329
37
+ - Gender F1-score: 0.9239
38
+ - Job Precision: 0.4643
39
+ - Job Recall: 0.1503
40
+ - Job F1-score: 0.2271
41
+ - Location Precision: 0.7505
42
+ - Location Recall: 0.8372
43
+ - Location F1-score: 0.7915
44
+ - Name Precision: 0.8225
45
+ - Name Recall: 0.7579
46
+ - Name F1-score: 0.7889
47
+ - Organization Precision: 0.5831
48
+ - Organization Recall: 0.6822
49
+ - Organization F1-score: 0.6288
50
+ - Patient Id Precision: 0.9330
51
+ - Patient Id Recall: 0.9800
52
+ - Patient Id F1-score: 0.9560
53
+ - Symptom And Disease Precision: 0.6264
54
+ - Symptom And Disease Recall: 0.6937
55
+ - Symptom And Disease F1-score: 0.6583
56
+ - Transportation Precision: 0.8042
57
+ - Transportation Recall: 0.7876
58
+ - Transportation F1-score: 0.7958
59
+ - Micro avg Precision: 0.7994
60
+ - Micro avg Recall: 0.8551
61
+ - Micro avg F1-score: 0.8263
62
+ - Macro avg Precision: 0.7743
63
+ - Macro avg Recall: 0.7764
64
+ - Macro avg F1-score: 0.7662
65
+ - Weighted avg Precision: 0.8004
66
+ - Weighted avg Recall: 0.8551
67
+ - Weighted avg F1-score: 0.8250
68
+
69
+ ## Model description
70
+
71
+ More information needed
72
+
73
+ ## Intended uses & limitations
74
+
75
+ More information needed
76
+
77
+ ## Training and evaluation data
78
+
79
+ More information needed
80
+
81
+ ## Training procedure
82
+
83
+ ### Training hyperparameters
84
+
85
+ The following hyperparameters were used during training:
86
+ - learning_rate: 2e-05
87
+ - train_batch_size: 64
88
+ - eval_batch_size: 64
89
+ - seed: 42
90
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
91
+ - lr_scheduler_type: linear
92
+ - num_epochs: 7
93
+
94
+ ### Training results
95
+
96
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Age Precision | Age Recall | Age F1-score | Date Precision | Date Recall | Date F1-score | Gender Precision | Gender Recall | Gender F1-score | Job Precision | Job Recall | Job F1-score | Location Precision | Location Recall | Location F1-score | Name Precision | Name Recall | Name F1-score | Organization Precision | Organization Recall | Organization F1-score | Patient Id Precision | Patient Id Recall | Patient Id F1-score | Symptom And Disease Precision | Symptom And Disease Recall | Symptom And Disease F1-score | Transportation Precision | Transportation Recall | Transportation F1-score | Micro avg Precision | Micro avg Recall | Micro avg F1-score | Macro avg Precision | Macro avg Recall | Macro avg F1-score | Weighted avg Precision | Weighted avg Recall | Weighted avg F1-score |
97
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------------:|:----------:|:------------:|:--------------:|:-----------:|:-------------:|:----------------:|:-------------:|:---------------:|:-------------:|:----------:|:------------:|:------------------:|:---------------:|:-----------------:|:--------------:|:-----------:|:-------------:|:----------------------:|:-------------------:|:---------------------:|:--------------------:|:-----------------:|:-------------------:|:-----------------------------:|:--------------------------:|:----------------------------:|:------------------------:|:---------------------:|:-----------------------:|:-------------------:|:----------------:|:------------------:|:-------------------:|:----------------:|:------------------:|:----------------------:|:-------------------:|:---------------------:|
98
+ | No log | 1.0 | 79 | 0.5109 | 0.8608 | 0.6258 | 0.4426 | 0.4738 | 0.9455 | 0.8643 | 0.9031 | 0.9407 | 0.9692 | 0.9547 | 1.0 | 0.4026 | 0.5741 | 0.0 | 0.0 | 0.0 | 0.4126 | 0.6039 | 0.4903 | 0.9479 | 0.2862 | 0.4396 | 0.0620 | 0.0506 | 0.0557 | 0.7840 | 0.9666 | 0.8658 | 0.2288 | 0.0546 | 0.0881 | 0.9362 | 0.2280 | 0.3667 | 0.5747 | 0.6091 | 0.5914 | 0.6258 | 0.4426 | 0.4738 | 0.5763 | 0.6091 | 0.5655 |
99
+ | No log | 2.0 | 158 | 0.3149 | 0.9142 | 0.6666 | 0.6617 | 0.6599 | 0.8715 | 0.9210 | 0.8956 | 0.9433 | 0.9752 | 0.9590 | 0.9499 | 0.8615 | 0.9035 | 0.0 | 0.0 | 0.0 | 0.6003 | 0.7613 | 0.6713 | 0.8434 | 0.7453 | 0.7913 | 0.3226 | 0.3774 | 0.3479 | 0.8531 | 0.9791 | 0.9118 | 0.4833 | 0.4208 | 0.4499 | 0.7986 | 0.5751 | 0.6687 | 0.6936 | 0.7676 | 0.7287 | 0.6666 | 0.6617 | 0.6599 | 0.6905 | 0.7676 | 0.7238 |
100
+ | No log | 3.0 | 237 | 0.2443 | 0.9324 | 0.7024 | 0.7168 | 0.7082 | 0.8834 | 0.9244 | 0.9034 | 0.9594 | 0.9867 | 0.9729 | 0.9368 | 0.8983 | 0.9171 | 0.0 | 0.0 | 0.0 | 0.6713 | 0.8095 | 0.7340 | 0.8293 | 0.7484 | 0.7868 | 0.4736 | 0.5110 | 0.4916 | 0.9115 | 0.9761 | 0.9427 | 0.5902 | 0.625 | 0.6071 | 0.7688 | 0.6891 | 0.7268 | 0.7539 | 0.8191 | 0.7851 | 0.7024 | 0.7168 | 0.7082 | 0.7491 | 0.8191 | 0.7812 |
101
+ | No log | 4.0 | 316 | 0.2329 | 0.9347 | 0.6945 | 0.7329 | 0.7118 | 0.8716 | 0.9450 | 0.9068 | 0.9640 | 0.9867 | 0.9752 | 0.9194 | 0.9134 | 0.9164 | 0.0 | 0.0 | 0.0 | 0.6822 | 0.8325 | 0.7499 | 0.8253 | 0.7579 | 0.7902 | 0.5069 | 0.5227 | 0.5147 | 0.9277 | 0.9786 | 0.9524 | 0.5454 | 0.6822 | 0.6062 | 0.7026 | 0.7098 | 0.7062 | 0.7541 | 0.8367 | 0.7933 | 0.6945 | 0.7329 | 0.7118 | 0.7520 | 0.8367 | 0.7905 |
102
+ | No log | 5.0 | 395 | 0.2173 | 0.9419 | 0.7434 | 0.7682 | 0.7441 | 0.8366 | 0.9674 | 0.8972 | 0.9634 | 0.9867 | 0.9749 | 0.8912 | 0.9394 | 0.9146 | 0.4186 | 0.1040 | 0.1667 | 0.7247 | 0.8298 | 0.7737 | 0.8114 | 0.7579 | 0.7837 | 0.5401 | 0.6719 | 0.5988 | 0.9129 | 0.9830 | 0.9467 | 0.5894 | 0.6963 | 0.6384 | 0.7461 | 0.7461 | 0.7461 | 0.7730 | 0.8519 | 0.8106 | 0.7434 | 0.7682 | 0.7441 | 0.7756 | 0.8519 | 0.8096 |
103
+ | No log | 6.0 | 474 | 0.2085 | 0.9443 | 0.7635 | 0.7745 | 0.7595 | 0.8719 | 0.9588 | 0.9133 | 0.9640 | 0.9867 | 0.9752 | 0.9153 | 0.9351 | 0.9251 | 0.4340 | 0.1329 | 0.2035 | 0.7369 | 0.8356 | 0.7832 | 0.8225 | 0.7579 | 0.7889 | 0.5739 | 0.6900 | 0.6266 | 0.9282 | 0.9800 | 0.9534 | 0.6085 | 0.6963 | 0.6494 | 0.7801 | 0.7720 | 0.7760 | 0.7887 | 0.8550 | 0.8205 | 0.7635 | 0.7745 | 0.7595 | 0.7907 | 0.8550 | 0.8196 |
104
+ | 0.2745 | 7.0 | 553 | 0.2063 | 0.9462 | 0.7743 | 0.7764 | 0.7662 | 0.8797 | 0.9553 | 0.9160 | 0.9645 | 0.9867 | 0.9755 | 0.9151 | 0.9329 | 0.9239 | 0.4643 | 0.1503 | 0.2271 | 0.7505 | 0.8372 | 0.7915 | 0.8225 | 0.7579 | 0.7889 | 0.5831 | 0.6822 | 0.6288 | 0.9330 | 0.9800 | 0.9560 | 0.6264 | 0.6937 | 0.6583 | 0.8042 | 0.7876 | 0.7958 | 0.7994 | 0.8551 | 0.8263 | 0.7743 | 0.7764 | 0.7662 | 0.8004 | 0.8551 | 0.8250 |
105
+
106
+
107
+ ### Framework versions
108
+
109
+ - Transformers 4.51.3
110
+ - Pytorch 2.6.0+cu124
111
+ - Datasets 3.6.0
112
+ - Tokenizers 0.21.1
config.json ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForTokenClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "B-AGE",
13
+ "1": "B-DATE",
14
+ "2": "B-GENDER",
15
+ "3": "B-JOB",
16
+ "4": "B-LOCATION",
17
+ "5": "B-NAME",
18
+ "6": "B-ORGANIZATION",
19
+ "7": "B-PATIENT_ID",
20
+ "8": "B-SYMPTOM_AND_DISEASE",
21
+ "9": "B-TRANSPORTATION",
22
+ "10": "I-AGE",
23
+ "11": "I-DATE",
24
+ "12": "I-GENDER",
25
+ "13": "I-JOB",
26
+ "14": "I-LOCATION",
27
+ "15": "I-NAME",
28
+ "16": "I-ORGANIZATION",
29
+ "17": "I-PATIENT_ID",
30
+ "18": "I-SYMPTOM_AND_DISEASE",
31
+ "19": "I-TRANSPORTATION",
32
+ "20": "O"
33
+ },
34
+ "initializer_range": 0.02,
35
+ "intermediate_size": 3072,
36
+ "label2id": {
37
+ "B-AGE": 0,
38
+ "B-DATE": 1,
39
+ "B-GENDER": 2,
40
+ "B-JOB": 3,
41
+ "B-LOCATION": 4,
42
+ "B-NAME": 5,
43
+ "B-ORGANIZATION": 6,
44
+ "B-PATIENT_ID": 7,
45
+ "B-SYMPTOM_AND_DISEASE": 8,
46
+ "B-TRANSPORTATION": 9,
47
+ "I-AGE": 10,
48
+ "I-DATE": 11,
49
+ "I-GENDER": 12,
50
+ "I-JOB": 13,
51
+ "I-LOCATION": 14,
52
+ "I-NAME": 15,
53
+ "I-ORGANIZATION": 16,
54
+ "I-PATIENT_ID": 17,
55
+ "I-SYMPTOM_AND_DISEASE": 18,
56
+ "I-TRANSPORTATION": 19,
57
+ "O": 20
58
+ },
59
+ "layer_norm_eps": 1e-12,
60
+ "max_position_embeddings": 512,
61
+ "model_type": "bert",
62
+ "num_attention_heads": 12,
63
+ "num_hidden_layers": 12,
64
+ "pad_token_id": 0,
65
+ "position_embedding_type": "absolute",
66
+ "torch_dtype": "float32",
67
+ "transformers_version": "4.51.3",
68
+ "type_vocab_size": 2,
69
+ "use_cache": true,
70
+ "vocab_size": 30522
71
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7af41ac562971c5dc7fda7d976ce46a8015097a86c99936912a1099cd5c2e19
3
+ size 435654532
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "pad_token": "[PAD]",
51
+ "sep_token": "[SEP]",
52
+ "strip_accents": null,
53
+ "tokenize_chinese_chars": true,
54
+ "tokenizer_class": "BertTokenizer",
55
+ "unk_token": "[UNK]"
56
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3765007113bca17134b853d397b00c0ff54d7ccd8c37ec11523ae41ae5dc4840
3
+ size 5368
vocab.txt ADDED
The diff for this file is too large to render. See raw diff