quickmt-zh-en
Neural Machine Translation Model
Usage
Install quickmt
git clone https://github.com/quickmt/quickmt.git
pip install ./quickmt/
Download model
quickmt-model-download quickmt/quickmt-zh-en ./quickmt-zh-en
Use model
Inference with quickmt
:
from quickmt import Translator
# Auto-detects GPU, set to "cpu" to force CPU inference
t = Translator("./quickmt-zh-en/", device="auto")
# Translate - set beam size to 5 for higher quality (but slower speed)
t(["他补充道:“我们现在有 4 个月大没有糖尿病的老鼠,但它们曾经得过该病。”"], beam_size=1)
# Get alternative translations by sampling
# You can pass any cTranslate2 `translate_batch` arguments
t(["他补充道:“我们现在有 4 个月大没有糖尿病的老鼠,但它们曾经得过该病。”"], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
The model is in ctranslate2
format, and the tokenizers are sentencepiece
, so you can use the model files directly if you want. It would be fairly easy to get them to work with e.g. LibreTranslate which also uses ctranslate2
and sentencepiece
.
Model Information
- Trained using
eole
- It took about 1 day on a single RTX 4090 on vast.ai
- Exported for fast inference to []CTranslate2](https://github.com/OpenNMT/CTranslate2) format
- Training data: https://huggingface.co/datasets/quickmt/quickmt-train.zh-en/tree/main
Metrics
BLEU and CHRF2 calculated with sacrebleu on the Flores200 devtest
test set ("zho_Hans"->"eng_Latn").
"Time" is the time to translate the following input with a single CPU core:
2019冠状病毒病(英語:Coronavirus disease 2019,缩写:COVID-19[17][18]),是一種由嚴重急性呼吸系統綜合症冠狀病毒2型(縮寫:SARS-CoV-2)引發的傳染病,导致了一场持续的疫情,成为人類歷史上致死人數最多的流行病之一。
Model | bleu | chrf2 | Time (s) |
---|---|---|---|
quickmt/quickmt-zh-en | 28.58 | 57.46 | 0.670 |
Helsinki-NLP/opus-mt-zh-en | 23.35 | 53.60 | 0.838 |
facebook/m2m100_418M | 18.96 | 50.06 | 11.5 |
facebook/nllb-200-distilled-600M | 26.22 | 55.17 | 13.2 |
facebook/nllb-200-distilled-1.3B | 28.54 | 57.34 | 23.6 |
facebook/m2m100_1.2B | 24.68 | 54.68 | 25.7 |
google/madlad400-3b-mt | 28.74 | 58.01 | ??? |
quickmt-zh-en
is the fastest and delivers fairly high quality.
Helsinki-NLP/opus-mt-zh-en is one of the most downloaded machine translation models on HuggingFace, and this model is considerably more accurate and a bit faster.
Training Configuration
### Vocab
src_vocab_size: 20000
tgt_vocab_size: 20000
share_vocab: False
data:
corpus_1:
path_src: hf://quickmt/quickmt-train-zh-en/zh
path_tgt: hf://quickmt/quickmt-train-zh-en/en
path_sco: hf://quickmt/quickmt-train-zh-en/sco
valid:
path_src: zh-en/dev.zho
path_tgt: zh-en/dev.eng
transforms: [sentencepiece, filtertoolong]
transforms_configs:
sentencepiece:
src_subword_model: "zh-en/src.spm.model"
tgt_subword_model: "zh-en/tgt.spm.model"
filtertoolong:
src_seq_length: 512
tgt_seq_length: 512
training:
# Run configuration
model_path: quickmt-zh-en
keep_checkpoint: 4
save_checkpoint_steps: 1000
train_steps: 104000
valid_steps: 1000
# Train on a single GPU
world_size: 1
gpu_ranks: [0]
# Batching
batch_type: "tokens"
batch_size: 13312
valid_batch_size: 13312
batch_size_multiple: 8
accum_count: [4]
accum_steps: [0]
# Optimizer & Compute
compute_dtype: "bfloat16"
optim: "pagedadamw8bit"
learning_rate: 1.0
warmup_steps: 10000
decay_method: "noam"
adam_beta2: 0.998
# Data loading
bucket_size: 262144
num_workers: 4
prefetch_factor: 100
# Hyperparams
dropout_steps: [0]
dropout: [0.1]
attention_dropout: [0.1]
max_grad_norm: 0
label_smoothing: 0.1
average_decay: 0.0001
param_init_method: xavier_uniform
normalization: "tokens"
model:
architecture: "transformer"
layer_norm: standard
share_embeddings: false
share_decoder_embeddings: true
add_ffnbias: true
mlp_activation_fn: gated-silu
add_estimator: false
add_qkvbias: false
norm_eps: 1e-6
hidden_size: 1024
encoder:
layers: 8
decoder:
layers: 2
heads: 16
transformer_ff: 4096
embeddings:
word_vec_size: 1024
position_encoding_type: "SinusoidalInterleaved"