fine-turn-ColQwen2-vn
This model is a fine-tuned version of vidore/colqwen2.5-base on the quyet498/train-col-vn dataset. It achieves the following results on the evaluation set:
- Loss: 0.0949
- Model Preparation Time: 0.0089
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 1.2
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time |
---|---|---|---|---|
No log | 0.0002 | 1 | 0.9128 | 0.0089 |
0.2186 | 0.0444 | 200 | 0.3293 | 0.0089 |
0.2364 | 0.0889 | 400 | 0.2411 | 0.0089 |
0.2301 | 0.1333 | 600 | 0.1937 | 0.0089 |
0.2082 | 0.1778 | 800 | 0.1852 | 0.0089 |
0.1739 | 0.2222 | 1000 | 0.1614 | 0.0089 |
0.1597 | 0.2667 | 1200 | 0.1650 | 0.0089 |
0.2538 | 0.3111 | 1400 | 0.1396 | 0.0089 |
0.1697 | 0.3556 | 1600 | 0.1417 | 0.0089 |
0.1634 | 0.4 | 1800 | 0.1236 | 0.0089 |
0.2365 | 0.4444 | 2000 | 0.1382 | 0.0089 |
0.1706 | 0.4889 | 2200 | 0.1289 | 0.0089 |
0.1404 | 0.5333 | 2400 | 0.1173 | 0.0089 |
0.127 | 0.5778 | 2600 | 0.1263 | 0.0089 |
0.1721 | 0.6222 | 2800 | 0.1131 | 0.0089 |
0.2178 | 0.6667 | 3000 | 0.1112 | 0.0089 |
0.1041 | 0.7111 | 3200 | 0.1104 | 0.0089 |
0.1538 | 0.7556 | 3400 | 0.1042 | 0.0089 |
0.1245 | 0.8 | 3600 | 0.1095 | 0.0089 |
0.1164 | 0.8444 | 3800 | 0.1053 | 0.0089 |
0.0894 | 0.8889 | 4000 | 0.1070 | 0.0089 |
0.1224 | 0.9333 | 4200 | 0.1061 | 0.0089 |
0.1275 | 0.9778 | 4400 | 0.0999 | 0.0089 |
0.1214 | 1.0222 | 4600 | 0.0993 | 0.0089 |
0.0985 | 1.0667 | 4800 | 0.0970 | 0.0089 |
0.0948 | 1.1111 | 5000 | 0.0953 | 0.0089 |
0.0602 | 1.1556 | 5200 | 0.0957 | 0.0089 |
0.0867 | 1.2 | 5400 | 0.0949 | 0.0089 |
Framework versions
- Transformers 4.53.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support