Модель RuBERT-tiny2 была fine-tuned для задачи prompt classification, предназначенная для Russian текст. Выполняет задачу multi-label classification со слудующимим категориями:

0: write
1: draw
2: neutral

Категории для русского языка:

write: написать
draw: рисовать
neutral: нейтральность

Usage

from transformers import pipeline
model = pipeline(model="r1char9/rubert-tiny2-clf")
model('Сгенерируй картину Томаса Шелби')
# [{'label': 'draw', 'score': 0.8699279427528381}]

Metrics:

metrics    write   draw  neutral  micro avg  macro avg  weighted avg
precision    1.0    1.0      1.0        1.0        1.0           1.0   
recall       1.0    1.0      1.0        1.0        1.0           1.0   
f1-score     1.0    1.0      1.0        1.0        1.0           1.0   
support    155.0  117.0     19.0      291.0      291.0         291.0   
auc-roc      1.0    1.0      1.0        1.0        1.0           1.0
Downloads last month
15
Safetensors
Model size
29.2M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.