ANTICP3: Anticancer Protein Prediction
This model is a fine-tuned version of facebook/esm2-t33-650M-UR50D
designed for binary classification of anticancer proteins (ACPs) from their primary sequence.
Developed by: G. P. S. Raghava Lab, IIIT-Delhi
Model hosted by: Dr. GPS Raghava's Group
Model Details
Feature | Description |
---|---|
Base Model | facebook/esm2_t33_650M_UR50D |
Fine-tuned On | Anticancer Protein Dataset |
Model Type | Binary Classification |
Labels | 0 : Non-Anticancer1 : Anticancer |
Framework | Transformers + PyTorch |
Format | safetensors |
Usage
Use this model with the Hugging Face transformers
library:
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# Load tokenizer and fine-tuned model
tokenizer = AutoTokenizer.from_pretrained("raghavagps-group/anticp3")
model = AutoModelForSequenceClassification.from_pretrained("raghavagps-group/anticp3")
# Example protein sequence
sequence = "MANCVVGYIGERCQYRDLKWWELRGGGGSGGGGSAPAFSVSPASGLSDGQSVSVSVSGAAAGETYYIAQCAPVGGQDACNPATATSFTTDASGAASFSFVVRKSYTGSTPEGTPVGSVDCATAACNLGAGNSGLDLGHVALTFGGGGGSGGGGSDHYNCVSSGGQCLYSACPIFTKIQGTCYRGKAKCCKLEHHHHHH"
# Tokenize and run inference
inputs = tokenizer(sequence, return_tensors="pt", truncation=True)
with torch.no_grad():
logits = model(**inputs).logits
probs = torch.nn.functional.softmax(logits, dim=-1)
prediction = torch.argmax(probs, dim=1).item()
labels = {0: "Non-Anticancer", 1: "Anticancer"}
print("Prediction:", labels[prediction])
- Downloads last month
- 7
Model tree for raghavagps-group/anticp3
Base model
facebook/esm2_t33_650M_UR50D