ANTICP3: Anticancer Protein Prediction

This model is a fine-tuned version of facebook/esm2-t33-650M-UR50D designed for binary classification of anticancer proteins (ACPs) from their primary sequence.

Developed by: G. P. S. Raghava Lab, IIIT-Delhi

Model hosted by: Dr. GPS Raghava's Group


Model Details

Feature Description
Base Model facebook/esm2_t33_650M_UR50D
Fine-tuned On Anticancer Protein Dataset
Model Type Binary Classification
Labels 0: Non-Anticancer
1: Anticancer
Framework Transformers + PyTorch
Format safetensors

Usage

Use this model with the Hugging Face transformers library:

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

# Load tokenizer and fine-tuned model
tokenizer = AutoTokenizer.from_pretrained("raghavagps-group/anticp3")
model = AutoModelForSequenceClassification.from_pretrained("raghavagps-group/anticp3")

# Example protein sequence
sequence = "MANCVVGYIGERCQYRDLKWWELRGGGGSGGGGSAPAFSVSPASGLSDGQSVSVSVSGAAAGETYYIAQCAPVGGQDACNPATATSFTTDASGAASFSFVVRKSYTGSTPEGTPVGSVDCATAACNLGAGNSGLDLGHVALTFGGGGGSGGGGSDHYNCVSSGGQCLYSACPIFTKIQGTCYRGKAKCCKLEHHHHHH"

# Tokenize and run inference
inputs = tokenizer(sequence, return_tensors="pt", truncation=True)

with torch.no_grad():
    logits = model(**inputs).logits
    probs = torch.nn.functional.softmax(logits, dim=-1)
    prediction = torch.argmax(probs, dim=1).item()

labels = {0: "Non-Anticancer", 1: "Anticancer"}
print("Prediction:", labels[prediction])
Downloads last month
7
Safetensors
Model size
652M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for raghavagps-group/anticp3

Finetuned
(24)
this model