ppo-LunarLander-v2 / config.json
Rahul213's picture
Upload PPO LunarLander-v2 trained agent
c01ef47 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e12bf45ff40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e12bf464040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e12bf4640d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e12bf464160>", "_build": "<function ActorCriticPolicy._build at 0x7e12bf4641f0>", "forward": "<function ActorCriticPolicy.forward at 0x7e12bf464280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e12bf464310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e12bf4643a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e12bf464430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e12bf4644c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e12bf464550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e12bf4645e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e12bf3f93c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1714974025300853875, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM13aD3teCc+nx4oPPQDVL4g7AW84mw4vQAAAAAAAAAA5vTZPeFYj7qDvH82ngR8MUdjTrrZRJS1AAAAAAAAgD+AyDI9KYhbunNAULOlunSvHBS+Oud+xTMAAIA/AACAP01gSr5ZNw0/3dS5PWymkb7ieUi9VUCMvQAAAAAAAAAAVvaAvnbpLD/m37M9rhiIvp7fgr1Sbno+AAAAAAAAAAAtvwC+5BNdP1UpY72vzpm+jQL5vMgD8zwAAAAAAAAAAA3UCb5pcCw/sBLSvBTrmr4pBPu9zlRsvQAAAAAAAAAAGlCYvcNVKLoeyOS6SWl4to34nDuZNgU6AAAAAAAAgD8ml3E+YSyeP5AGuz6UeFm+oY3EPm3XtT0AAAAAAAAAAOZ+k72F0+C5yFUAt6TJyrFMBCc6UFAWNgAAgD8AAIA/hgQEvj0Lc7uyhOW6QHwNuZX+ljx2ZvA5AACAPwAAgD96epg+RCqAPzpskj2JHom+5DhYPtpWsbwAAAAAAAAAAEAtiT0paAa6oYrDu9k4BjhXqTy7guQNtwAAgD8AAIA/AJfjPORZNz6ayfG94z2Evr/nMb3m8hm9AAAAAAAAAADayQY+DOcWP0qbIb5gKaC+d2uwPH3O+r0AAAAAAAAAAAAI+7wfLfq5I4h9us8+JbWff5a5dDaVOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGRS/Ot4iX+MAWyUTegDjAF0lEdAl2wk1ZTya3V9lChoBkdAccJTOgQHzGgHTSABaAhHQJdtB3IMjNZ1fZQoaAZHQHAIoZydWhhoB01KAmgIR0CXdhs5GSZCdX2UKGgGR0BwH0blzU7TaAdNCgJoCEdAl3b/2PDHfnV9lChoBkdAZvqBBiTdL2gHTegDaAhHQJd4YZeiSJV1fZQoaAZHQGcMOhK15SpoB03oA2gIR0CXfPMHKOktdX2UKGgGR0BnPL8xbjcVaAdN6ANoCEdAl4AY24uscXV9lChoBkdAZFCrupjtomgHTegDaAhHQJeCXCO3lS11fZQoaAZHQG3XD9n9NvhoB01yAmgIR0CXh5PH1e0HdX2UKGgGR0BwqTM/yGzsaAdNsAJoCEdAl4zDhky1u3V9lChoBkdAOHQ1BMSK32gHS9VoCEdAl4662SdOI3V9lChoBkdAZMNiFTNt7GgHTegDaAhHQJeQZk/bCaZ1fZQoaAZHQGdmxg7YChhoB03oA2gIR0CXpOq0MPSVdX2UKGgGR0BhRqcPOIIoaAdN6ANoCEdAl6dJuMuOCHV9lChoBkdAZaN7fHggo2gHTegDaAhHQJeoQYaYNRZ1fZQoaAZHQGLF8lXzUZxoB03oA2gIR0CXqLtEXtSidX2UKGgGR0Bkeq9RJmNBaAdN6ANoCEdAl6mO+IuXeHV9lChoBkdAMUIO2AoXsWgHTQABaAhHQJeq4jRlYlp1fZQoaAZHQG/z4KhL5ARoB01gAmgIR0CXrYJvYODrdX2UKGgGR0BFFN+CsfaIaAdNEQFoCEdAl63vJ3gUDnV9lChoBkdAZUFRUFSsKmgHTegDaAhHQJevwn8baRJ1fZQoaAZHQDNd24d6syVoB0vgaAhHQJewrrnkkrx1fZQoaAZHQGVmk7W/ag5oB03oA2gIR0CXsLo371qWdX2UKGgGR0BwaBpi7TUiaAdNQgFoCEdAl7Y6R2bG3nV9lChoBkdAaDKDAaef7WgHTegDaAhHQJe5qL1mJ3x1fZQoaAZHQG172aMJhORoB013AWgIR0CXucDziCJ5dX2UKGgGR0BlUz1RLsa9aAdN6ANoCEdAl7rZ2dNFjXV9lChoBkdAY80Fi8WbgGgHTegDaAhHQJe8loDgZTB1fZQoaAZHQGWeo5YHPeJoB03oA2gIR0CXximF8G9pdX2UKGgGR0BtWmTA31jBaAdNDQJoCEdAl8249cKPXHV9lChoBkdAYVH0Fr2xp2gHTegDaAhHQJfPD3xnWat1fZQoaAZHQG0CDHXEqDtoB01KAWgIR0CXz3CxeLNwdX2UKGgGR0BwEdkUbkwOaAdN5wJoCEdAl9HIMWoFV3V9lChoBkdAcEN9QGfPHGgHTT8CaAhHQJfR5tzjm0V1fZQoaAZHQGLvQ1rIo3JoB03oA2gIR0CX1TMN+b3HdX2UKGgGR0BxRIhIOH32aAdN1gJoCEdAl9ZZhF3IMnV9lChoBkdAbw/sfq5byGgHTUUCaAhHQJfYUm8dxQ11fZQoaAZHQGUlCs4ku6FoB03oA2gIR0CX2Uo2n88+dX2UKGgGR0Bw73xYq5LAaAdNRAJoCEdAl+2/HktEonV9lChoBkdAaI6XqqwQlWgHTegDaAhHQJfz64TbnHN1fZQoaAZHQGyjcbaRISVoB01AAWgIR0CX9aCJGe+VdX2UKGgGR0BfMQyEcsDoaAdN6ANoCEdAl/dB9srNGHV9lChoBkdAYvCjkdV/+mgHTegDaAhHQJf7ZGpda+x1fZQoaAZHQG8KhJ7LMcJoB00rAmgIR0CX/qLLIPsidX2UKGgGR0BQEmbgCOm0aAdL4mgIR0CYAjoexOcldX2UKGgGR0BvKeJcgQpXaAdNawFoCEdAmAKtYjjaPHV9lChoBkdAbiEbjtG/e2gHTQICaAhHQJgD6OT7l7t1fZQoaAZHQGKUqoQ4CIVoB03oA2gIR0CYBa9s7+1jdX2UKGgGR0BkF6ekHlfaaAdN6ANoCEdAmAfSlnAZbnV9lChoBkdANngNCqp97WgHS9toCEdAmA1+vdM0xnV9lChoBkdAZuO7ZnL7oGgHTegDaAhHQJgPlSiudPN1fZQoaAZHQHAqX1anrIJoB01gA2gIR0CYEHI+4b0fdX2UKGgGR0BwPGUr08NhaAdN5AFoCEdAmBEhQemvXHV9lChoBkdAcG1uG9HtnmgHTSUCaAhHQJgROzF+/g11fZQoaAZHQHCuqHbh3q1oB000AWgIR0CYElXHzYmLdX2UKGgGR0Bi7kdHUc4paAdN6ANoCEdAmBametjkMnV9lChoBkdAY+3SMtK7I2gHTegDaAhHQJgZD4/NZ/11fZQoaAZHQG4eftx+8XhoB01iAWgIR0CYGWWdVea8dX2UKGgGR0BxcWoP07KaaAdNwgFoCEdAmBowZ0jkdXV9lChoBkdASbWKyfL9uWgHS89oCEdAmBpJBomG/XV9lChoBkdAbrm065oXbmgHTWECaAhHQJgamd07r9l1fZQoaAZHQGSLEkKNQ0poB03oA2gIR0CYHTJE6T4ddX2UKGgGR0BhRwI0IkZ8aAdN6ANoCEdAmB99cry1/nV9lChoBkdAZBpdJrcj7mgHTegDaAhHQJgglfD1oQF1fZQoaAZHQHFS17dBSk1oB02nAmgIR0CYIWbXYlIFdX2UKGgGR0BxB8bFS88LaAdNagFoCEdAmDU4Lw4KhXV9lChoBkdAcCTR1oxpL2gHTbUBaAhHQJg1U3n6l+F1fZQoaAZHQGwrXsPatcRoB03EAWgIR0CYN4mWMS9NdX2UKGgGR0Bt2xXbM5fdaAdNmgFoCEdAmDgmI42jwnV9lChoBkdAbfdTH80k4WgHTf0CaAhHQJg8/79AHFB1fZQoaAZHQHDHetGNJe5oB010AWgIR0CYPiq+8Gs4dX2UKGgGR0BwCOBjFyaNaAdNvgFoCEdAmEE/VEuxr3V9lChoBkdASTYBT4tYjmgHTQgBaAhHQJhBwU0vXbx1fZQoaAZHQG8lG9Htnf5oB00yAWgIR0CYQiKpDNQkdX2UKGgGR0Bx0lxCIDYAaAdNkAFoCEdAmEMEroW56XV9lChoBkdAb6wO+7Dl5mgHTV8BaAhHQJhDrFHavid1fZQoaAZHQHD0JlOGj9JoB033AWgIR0CYQ92VE/jbdX2UKGgGR0BsNk9Oh0yQaAdN8AFoCEdAmESs3hn8K3V9lChoBkdAcWrl+mWMTGgHTVwBaAhHQJhFqEWZZ0V1fZQoaAZHQHFiB+nZTQ5oB00WAmgIR0CYRnO0LMLXdX2UKGgGR0Bsghxeb/fgaAdNbQJoCEdAmEaG3KB/Z3V9lChoBkdAcRssguAZsWgHTXEBaAhHQJhITdGiHqN1fZQoaAZHQHDuFIy0rsloB00eA2gIR0CYSI7eVLSNdX2UKGgGR0ByDL8Nx2jgaAdNoQFoCEdAmEqGUW2w3nV9lChoBkdAcYCLjxTbWWgHTTEBaAhHQJhRKL5ylvZ1fZQoaAZHQHCf9VvMr3FoB02nAmgIR0CYUU0mdAgQdX2UKGgGR0BtVM6YE4ecaAdNjAFoCEdAmFT0mICU5nV9lChoBkdAcgx74i5d4WgHTS8BaAhHQJhV0xVQyh11fZQoaAZHQHBByNOuaF5oB02RAWgIR0CYVnah6By0dX2UKGgGR0BxChefI0ZWaAdNhgFoCEdAmFbLvXsgMnV9lChoBkdAcfSloUSIxmgHTQcCaAhHQJhX34xk/bF1fZQoaAZHQHECLLMcIZ9oB01iAmgIR0CYWzHnEETydX2UKGgGR0Bt2JNfw7T2aAdNagFoCEdAmFuUTtb9qHV9lChoBkdAcYRiZfD1oWgHTfoBaAhHQJhedi5NGmV1fZQoaAZHQHBr1ejVQRBoB01fAmgIR0CYX3irksBidX2UKGgGR0Bw0yCUX531aAdN3wFoCEdAmGCuwX668XV9lChoBkdAcJ7qxC6YmmgHTaQCaAhHQJhh8pYs/Y91fZQoaAZHQHBmdYGMXJpoB01fAmgIR0CYYgCfHxSYdX2UKGgGR0Bx4tufmLccaAdNwAFoCEdAmGI1a8pTdnV9lChoBkdAbQAfOlfqo2gHTVICaAhHQJhjYO7QLNR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 252, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}