GPT-Neo 1.3B - LUMI Conversational

πŸš€ GPT-Neo 1.3B trained on Europe's LUMI supercomputer using AMD MI250X GPUs

Model Description

This model is a fine-tuned version of EleutherAI/gpt-neo-1.3B trained for conversational AI tasks.

Key Features

  • πŸ† High-quality conversational AI (loss converged to 1.27)
  • πŸ”§ AMD GPU optimized - Trained with ROCm 6.2.4
  • ⚑ Raw PyTorch implementation - No HuggingFace Trainer dependency
  • πŸ“Š 21,665 conversation examples - OpenAssistant dataset

Training Details

Infrastructure

  • GPUs: 8x AMD Instinct MI250X (64GB each)
  • Framework: PyTorch with raw distributed training
  • Communication: NCCL with Slingshot-11 network

Training Configuration

  • Base Model: EleutherAI/gpt-neo-1.3B
  • Dataset: OpenAssistant Conversations (21,665 examples)
  • Batch Size: 64 global (8 per GPU)
  • Steps: 338 training steps (early convergence)
  • Learning Rate: 5e-6 with cosine annealing
  • Precision: BF16 mixed precision

Performance

  • Final Loss: 1.27 (excellent convergence)
  • Training Time: 29 hours on 8 GPUs
  • Memory Usage: ~12GB per GPU
  • Inference Speed: 22.1 tokens/second

Usage

Quick Start

from transformers import GPTNeoForCausalLM, GPT2Tokenizer

# Load model and tokenizer
model = GPTNeoForCausalLM.from_pretrained("raimondskrauklis/gpt-neo-1.3b-lumi-conversational")
tokenizer = GPT2Tokenizer.from_pretrained("raimondskrauklis/gpt-neo-1.3b-lumi-conversational")

# Generate response
prompt = "Human: What is machine learning?\nAssistant:"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=150, temperature=0.7, do_sample=True)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
Conversation Format
The model was trained on conversations with this format:
Human: [question or statement]
Assistant: [response]
Model Performance
Based on validation testing, the model demonstrates:

General Knowledge: Accurate explanations with historical context
Programming: Generates working code with explanations
Technical Discussion: Coherent responses about complex topics
Problem Solving: Structured, logical approaches
Consistency: Reliable performance across different domains

Technical Specifications
MetricValueParameters1.3BTraining Steps338Final Loss1.27Training Time29 hoursGPUs Used8x AMD MI250XMemory per GPU~12GBInference Speed22.1 tokens/sec
Acknowledgments

LUMI: European pre-exascale supercomputer infrastructure
EleutherAI: Base GPT-Neo model
OpenAssistant: Conversation dataset

Citation
bibtex@misc{gptneo-lumi-conversational,
  title={GPT-Neo 1.3B Fine-tuned on LUMI Supercomputer},
  author={Raimonds Krauklis},
  year={2025},
  howpublished={Hugging Face Model Hub},
  url={https://huggingface.co/raimondskrauklis/gpt-neo-1.3b-lumi-conversational}
}
License
This model is released under the Apache 2.0 license, same as the base GPT-Neo model.
Downloads last month
13
Safetensors
Model size
1.32B params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for raimondskrauklis/gpt-neo-1.3b-lumi-conversational

Finetuned
(36)
this model

Dataset used to train raimondskrauklis/gpt-neo-1.3b-lumi-conversational