Update batch size
Browse files- README.md +37 -37
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +34 -34
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +1 -1
- ppo-LunarLander-v2/pytorch_variables.pth +1 -1
- ppo-LunarLander-v2/system_info.txt +5 -6
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -1,37 +1,37 @@
|
|
1 |
-
---
|
2 |
-
library_name: stable-baselines3
|
3 |
-
tags:
|
4 |
-
- LunarLander-v2
|
5 |
-
- deep-reinforcement-learning
|
6 |
-
- reinforcement-learning
|
7 |
-
- stable-baselines3
|
8 |
-
model-index:
|
9 |
-
- name: PPO
|
10 |
-
results:
|
11 |
-
- task:
|
12 |
-
type: reinforcement-learning
|
13 |
-
name: reinforcement-learning
|
14 |
-
dataset:
|
15 |
-
name: LunarLander-v2
|
16 |
-
type: LunarLander-v2
|
17 |
-
metrics:
|
18 |
-
- type: mean_reward
|
19 |
-
value:
|
20 |
-
name: mean_reward
|
21 |
-
verified: false
|
22 |
-
---
|
23 |
-
|
24 |
-
# **PPO** Agent playing **LunarLander-v2**
|
25 |
-
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
-
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
-
|
28 |
-
## Usage (with Stable-baselines3)
|
29 |
-
TODO: Add your code
|
30 |
-
|
31 |
-
|
32 |
-
```python
|
33 |
-
from stable_baselines3 import ...
|
34 |
-
from huggingface_sb3 import load_from_hub
|
35 |
-
|
36 |
-
...
|
37 |
-
```
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 279.31 +/- 15.70
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f488c73e170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f488c73e200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f488c73e290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f488c73e320>", "_build": "<function ActorCriticPolicy._build at 0x7f488c73e3b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f488c73e440>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f488c73e4d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f488c73e560>", "_predict": "<function ActorCriticPolicy._predict at 0x7f488c73e5f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f488c73e680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f488c73e710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f488c73e7a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f488c744100>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1716716498219779311, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoZcjxcUy66rhS5unN9ubXa6fM53a3UOQAAgD8AAIA/ZoJbPHtc8DnWiFg6KaT5NVQebrhgtYK5AACAPwAAgD9mRhq8rvmkunhZK7sW6ao3IdoSOqOL2zkAAIA/AACAP83NiryFQ++5tb7CuklhNrUSKIS65gPkOQAAgD8AAIA/M19rvLrnFD69oqk9MO5/vmD8OTyYc187AAAAAAAAAABmpIy9e86eutb5JrrrnRG1YorKusuQQDkAAIA/AACAP808e71ck1q6La/SOzZnXjbO2FU65ntZNQAAgD8AAIA/Zs5hvcNFQbrD7Na6HkgHtawjDrt76PQ5AACAPwAAgD+zxRM92HPaPq6TmL3ajVu+FkBdugUOZD0AAAAAAAAAAOYJJ71cU3m6UvlcOJydPjN05Nq6iTuBtwAAgD8AAIA/OpNvPqaKkz9cwAw+x8l/viCbhj6OgkK9AAAAAAAAAAAABgq9KfAFulFjnDkdXbu1tdYPuEjXuLgAAIA/AACAP2bmcLpIH6e6uL1uu/IdZThG2Jw6OoXEOAAAgD8AAIA/s1NFvR9Np7lmBMM7qp03OGuAE7r0SZK6AACAPwAAgD+aZ5I8E+fpPg1BCr3FLEe+E6yDPZNUqLwAAAAAAAAAAGZ2HzwUlI66uIvGuk29srVfND86M3LmOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGWKtCiRGMKMAWyUTegDjAF0lEdAmeyk3juKGnV9lChoBkdAYzea/ATIvWgHTegDaAhHQJnzRYfW+XZ1fZQoaAZHQGCUlq8DjipoB03oA2gIR0CZ9EMRYigTdX2UKGgGR0BnEk/D+BH1aAdN6ANoCEdAmfit4eLeh3V9lChoBkdAZBR0IToMa2gHTegDaAhHQJn/3jlxOtZ1fZQoaAZHQGY/F4keIVNoB03oA2gIR0CaAbIoVmBfdX2UKGgGR0BlyYs9SuQqaAdN6ANoCEdAmggnRgJC0HV9lChoBkdAYuAe9SMtLGgHTegDaAhHQJoQjS4OMER1fZQoaAZHQGLFRNyo4uNoB03oA2gIR0CaEdA1ejVQdX2UKGgGR0BhxLmSyMUAaAdN6ANoCEdAmhOyOearm3V9lChoBkdAYYjhWHUMHGgHTegDaAhHQJoqM/3WWhR1fZQoaAZHQGQk/MW43FVoB03oA2gIR0CaLvGd7OVxdX2UKGgGR0Bfki704BFNaAdN6ANoCEdAmjVkka/ATXV9lChoBkdAYJw6bONYKmgHTegDaAhHQJo4vLIPsiV1fZQoaAZHQGJNkNvwVj9oB03oA2gIR0CaP4ASnLq2dX2UKGgGR0BhVNocrAgxaAdN6ANoCEdAmj/iamXPaHV9lChoBkdAY8k9qUNayWgHTegDaAhHQJpDiClJpWV1fZQoaAZHQGR3aq814xFoB03oA2gIR0CaSpi4J/oadX2UKGgGR0Bk3qxkd3jdaAdN6ANoCEdAmkuf8qFyrHV9lChoBkdAZQB3lCCz1WgHTegDaAhHQJpQJsDW9UV1fZQoaAZHQGHzmQSzw+doB03oA2gIR0CaV61kUbkwdX2UKGgGR0BmXNymygPFaAdN6ANoCEdAmllsvqTr3XV9lChoBkdAYiVyfcvdumgHTegDaAhHQJpe17Qb+991fZQoaAZHQGTf16E8JUpoB03oA2gIR0CaZJP/aQFLdX2UKGgGR0Bi8qlchTwVaAdN6ANoCEdAmmXIMvysjnV9lChoBkdAG07wazeGf2gHS+VoCEdAmmc6XnhbW3V9lChoBkdAYQUp0fYBeWgHTegDaAhHQJpnnTBqKxd1fZQoaAZHQGP+EM9bHIZoB03oA2gIR0CagHXCCSRsdX2UKGgGR0BemNkSVW0aaAdN6ANoCEdAmoR9Dc/MXHV9lChoBkdAYys8vmHP/2gHTegDaAhHQJqJ7fP5YYB1fZQoaAZHQDqcvboKUmloB00PAWgIR0CaioRxtHhCdX2UKGgGR0BhQSjvd/KAaAdN6ANoCEdAmoxhXCCSR3V9lChoBkdAYY+Ug0TDfmgHTegDaAhHQJqQZRZU1ht1fZQoaAZHQGWD+wTufEpoB03oA2gIR0CakJ72+PBBdX2UKGgGR0BkcUPatcOcaAdN6ANoCEdAmpLmEoOQQ3V9lChoBkdAMQYZAIIF/2gHS/9oCEdAmph6D5CWvHV9lChoBkdAYZp6rNnoPmgHTegDaAhHQJqY/tiQT251fZQoaAZHQGcN1f/m1Y1oB03oA2gIR0Camd9+gDigdX2UKGgGR0BQT/iHZbpvaAdNCwFoCEdAmprmrjo6jnV9lChoBkdAZ8b0kGA09GgHTegDaAhHQJqdsmmce8x1fZQoaAZHQGQkxn3+MqBoB03oA2gIR0CapdFIuoP1dX2UKGgGR8AX2/0ulGgBaAdL8WgIR0CaqG29L6DXdX2UKGgGR0BdosQZn+Q2aAdN6ANoCEdAmq53OGCZnnV9lChoBkdAYbYJhvze42gHTegDaAhHQJq0Q287IT51fZQoaAZHQFuS6KLsKLNoB03oA2gIR0CatXg7YChfdX2UKGgGR0BmUF10T101aAdN6ANoCEdAmrdRmPHT7XV9lChoBkdAY0lS75Ec82gHTegDaAhHQJrOWitaIN51fZQoaAZHQGEK9cjZ+QVoB03oA2gIR0Ca0vmk30f6dX2UKGgGR0BjKit/4IrwaAdN6ANoCEdAmtqh0yP+43V9lChoBkdAaGQChew9q2gHTegDaAhHQJrjqhN/OMV1fZQoaAZHQGNtn5i3G4toB03oA2gIR0Ca4+3WnTAndX2UKGgGR0Bg3CU5dWyUaAdN6ANoCEdAmuZmOAAhjnV9lChoBkdAZr2fHPu5SWgHTegDaAhHQJrsEz0pVjt1fZQoaAZHQGHnzFVDKHRoB03oA2gIR0Ca7XaXa8HwdX2UKGgGR0Bb+vcrRSgoaAdN6ANoCEdAmu57UXpGF3V9lChoBkdAYxGyNXHR1GgHTegDaAhHQJrxNL26ClJ1fZQoaAZHQEhj7rLQokRoB00pAWgIR0Ca9hD0163RdX2UKGgGR0Biip7VrhzeaAdN6ANoCEdAmvdVG0/nn3V9lChoBkdAYljTAFgUlGgHTegDaAhHQJr5Es3AEdN1fZQoaAZHQGZlMNDtw71oB03oA2gIR0Ca/Z82Jiy6dX2UKGgGR0BlCOC2+fyxaAdN6ANoCEdAmwLNXgccVHV9lChoBkdAZVjx6OYIB2gHTegDaAhHQJsD6Gyon8d1fZQoaAZHQF2cMglnh89oB03oA2gIR0CbBaMZgogFdX2UKGgGR0Bj782LpA2RaAdN6ANoCEdAmwrFschkiHV9lChoBkdAZFaqJdjXnWgHTegDaAhHQJsi2DTSb6R1fZQoaAZHQGEw1fu1F6RoB03oA2gIR0CbKHlC1JDmdX2UKGgGR0BhJNcnmaH9aAdN6ANoCEdAmy/ROpKjBXV9lChoBkdAZZrd0q6OHWgHTegDaAhHQJswFmSQo1F1fZQoaAZHQEJXoXbdrO9oB0v2aAhHQJsxzAtWdVh1fZQoaAZHQGNAa9bor4FoB03oA2gIR0CbONe4kNWmdX2UKGgGR0Bg4eE/SpiraAdN6ANoCEdAmzp2saKk23V9lChoBkdAYVL4Oc2BKGgHTegDaAhHQJs7+bLEDQt1fZQoaAZHQGaPANwzch1oB03oA2gIR0CbQGUnogV5dX2UKGgGR0Bhd+G21D0EaAdN6ANoCEdAm0e2GqPwNXV9lChoBkdAXekdQwblzWgHTegDaAhHQJtJJylvZRN1fZQoaAZHQGQi77sOXmhoB03oA2gIR0CbS0J4jbBXdX2UKGgGR0BkAVsvZh8ZaAdN6ANoCEdAm1CB8pkPMHV9lChoBkdAYw8gkka/AWgHTegDaAhHQJtWf9AHE/B1fZQoaAZHQF8V6DGtITZoB03oA2gIR0CbV8cbzbvgdX2UKGgGR0BhpYUYbbUPaAdN6ANoCEdAm1mx7VrhznV9lChoBkdAcAEQbMottmgHTWoCaAhHQJta2t7rs0J1fZQoaAZHQF6hzZpSJj5oB03oA2gIR0CbXf6hQFcIdX2UKGgGR0BiTh4lhPTHaAdN6ANoCEdAm3vx5xBE8nV9lChoBkdANPk03wTdtWgHS/1oCEdAm30YP5HmR3V9lChoBkdAZZljEvTPSmgHTegDaAhHQJuCVfKISDh1fZQoaAZHQF4lx2St/4JoB03oA2gIR0CbgpJo0ygxdX2UKGgGR0BhBRuQ6p5vaAdN6ANoCEdAm4oF0xM363V9lChoBkdAZBeNp/PPcGgHTegDaAhHQJuLXAP/aQF1fZQoaAZHQF47rH2h7E5oB03oA2gIR0CbjEwaR6njdX2UKGgGR0BjqAREnb7CaAdN6ANoCEdAm47vc8DB/XV9lChoBkdAS9jR+jM3ZWgHS/doCEdAm47/exfOU3V9lChoBkdAZPqQvHtF8WgHTegDaAhHQJuTL0btJFt1fZQoaAZHQF7yCMglnh9oB03oA2gIR0CblDa5wwTNdX2UKGgGR0BkVUyrPt2LaAdN6ANoCEdAm5Wp0KZ2IXV9lChoBkdAZIGULUkOZ2gHTegDaAhHQJuZsXSBshx1fZQoaAZHQDQv+yZ8a4toB0v+aAhHQJuaqzv7WNF1fZQoaAZHQGGfBQ3xWktoB03oA2gIR0Cbnl4etCAudX2UKGgGR0BhcFU2kzoEaAdN6ANoCEdAm59homG/OHV9lChoBkdAZstvv0AcUGgHTegDaAhHQJug6skpqh11fZQoaAZHQGbgE0rK/21oB03oA2gIR0CbpoTQVsUJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x0000022538321090>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x0000022538321120>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x00000225383211B0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x0000022538321240>", "_build": "<function ActorCriticPolicy._build at 0x00000225383212D0>", "forward": "<function ActorCriticPolicy.forward at 0x0000022538321360>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x00000225383213F0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x0000022538321480>", "_predict": "<function ActorCriticPolicy._predict at 0x0000022538321510>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x00000225383215A0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x0000022538321630>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x00000225383216C0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000002253813FE00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1716823778851396600, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE2hZT3DPTq6ujsiuyBWwTcTNSS7u2vGOQAAAAAAAAAAM9QsPcu8Kj+NWXM9SsYPv+mAmT2Eapq9AAAAAAAAAABmuMm9MbOnP1GWxL4hW/u+VVFgvtuwqL4AAAAAAAAAAM08GTuTIHg/BeHuPJLwNL/Nexw9XjajvAAAAAAAAAAASvK2PrbAIT8MHbe9nabxvsAHhD6TdSy+AAAAAAAAAAAAUjE8e+CSuhUyVLmzXkm0N8svOzvNdTgAAIA/AACAPzN3MbzDxUi6DuCWNFY7FTDHfTE78hBxswAAgD8AAIA/A9VWvjmlGj86a48+VnvUvtF4jL2CKZA+AAAAAAAAAAAzPLY9schOPgZm5L1DYPW+IxQXPeDS77wAAAAAAAAAAAAQKr7HPQE/RTkQPUuUHL8icSa+iizDPQAAAAAAAAAAc/DkPZKDHD6z2NK+x+DhvtRo372o5pW+AAAAAAAAAABmpow87x+dPwb8mT1ltSC/6+sNPffRxD0AAAAAAAAAAE2vWz2fS6S7i6rUO/82kjx/NQO9jXJ4PQAAgD8AAIA/mvC4PWsxlT/JUj0+krgvvzMECD5Vr3E9AAAAAAAAAACaVeE8Ba+MPkgberx1mdW+6InnPLLhbLwAAAAAAAAAALMrVr7sLS8/qgo8PtsDFL/L4tO94l7sPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/NuARTS9eMAWyUS9eMAXSUR0CV0bVGTcIrdX2UKGgGR0Bu4CIDYAbRaAdLw2gIR0CV0frJbMX8dX2UKGgGR0By2KOZLIxQaAdL32gIR0CV0h+Lm6oVdX2UKGgGR0BywXrqt5lfaAdL3GgIR0CV0tmsvIwNdX2UKGgGR0BydpG7SRbKaAdLwGgIR0CV0xfDDTBqdX2UKGgGR0BuroyEcsDoaAdLzmgIR0CV04pVS4vwdX2UKGgGR0Bxp8btJFspaAdNHgFoCEdAldPYUzsQd3V9lChoBkdAcdaJJXhfjWgHS75oCEdAldQri++M63V9lChoBkdAc2lvo/zJ62gHS85oCEdAldSsE3bVSXV9lChoBkdAU0kqgAZKnWgHTegDaAhHQJXVRP69CeF1fZQoaAZHQHIyVHe7+UBoB0u7aAhHQJXVsvnKW9l1fZQoaAZHQHElZxFRYRxoB0vRaAhHQJXVx7ojfN11fZQoaAZHQHDDyJwbVBloB0u9aAhHQJXWAKVpsXV1fZQoaAZHQHHDizollbxoB0utaAhHQJXWOoMrmQt1fZQoaAZHQHLKyxJNCZ5oB0u+aAhHQJXWwc4o7V91fZQoaAZHQHHMPJ3gUDdoB0vDaAhHQJXWygi/wiJ1fZQoaAZHQHM6/wAlv61oB0vGaAhHQJXXXVmSQo11fZQoaAZHQHKIcwco6S1oB0vaaAhHQJXXvsiSq2l1fZQoaAZHQHHgLE9+w1RoB0vAaAhHQJXX2Tkhib51fZQoaAZHQHBePnB+F11oB0vPaAhHQJXY6WY4Qz11fZQoaAZHQHMfU2DQJHBoB0vgaAhHQJXY6WY4Qz11fZQoaAZHQHIL8T37DVJoB0u3aAhHQJXY48YAKfF1fZQoaAZHQHDDw3xWkrRoB0vaaAhHQJYIZ7u2JBR1fZQoaAZHQG9JpAlfJFNoB0u+aAhHQJYIh7/n4fx1fZQoaAZHQHBUcmKIi1RoB0vAaAhHQJYJQmShakh1fZQoaAZHQHLUFaGHpKVoB0u5aAhHQJYJkUUO/cp1fZQoaAZHQHHlRnanJkpoB0vIaAhHQJYJ7iVB2Oh1fZQoaAZHQHHc6wt8NQVoB0u2aAhHQJYJ9mDlHSZ1fZQoaAZHQHCE7e/Ho5hoB0vUaAhHQJYKZFw1ivx1fZQoaAZHQHDMo60Y0l9oB0u7aAhHQJYKiP8yeqd1fZQoaAZHQHDSwiV0Lc9oB0vCaAhHQJYLLgGbCrN1fZQoaAZHQHGwzDbah6BoB0u4aAhHQJYLYZZSvTx1fZQoaAZHQHEZqkZaV2RoB0vHaAhHQJYLmbjLjgh1fZQoaAZHQHK2+YplSTBoB0v3aAhHQJYL0vtdAxB1fZQoaAZHQHKQQEEC/49oB0u5aAhHQJYMTufEn9h1fZQoaAZHQHAZjH0btJFoB0vBaAhHQJYMfNwBHTZ1fZQoaAZHQG4mUtqYZ2poB0u6aAhHQJYM2cYqG1x1fZQoaAZHQHKryADq4YtoB0vaaAhHQJYNHVf/m1Z1fZQoaAZHQHFLQ/oq0+loB0vHaAhHQJYOC8jAzpJ1fZQoaAZHQHMzN6w+t8xoB0vqaAhHQJYOFhYvFm51fZQoaAZHQHJeYlpoK2NoB0u6aAhHQJYOKrR0EHN1fZQoaAZHQHHlzLbHp8poB0vTaAhHQJYPfx5LRKJ1fZQoaAZHQHO3mNzbN8poB0u9aAhHQJYPvcafjCJ1fZQoaAZHQGTht5D7ZWdoB03oA2gIR0CWEAZHuqm1dX2UKGgGR0BvYHNcGC7LaAdNAgFoCEdAlhAGR7qptXV9lChoBkdAcKQJlrdnCmgHS7poCEdAlhAfvWpZOnV9lChoBkdAcVjaYu01ImgHS8xoCEdAlhBOxB3RonV9lChoBkdAcDNRqGlANWgHS75oCEdAlhB4JRfnfXV9lChoBkdAc5jGy5Zr6GgHTRUBaAhHQJYQ+NipeeF1fZQoaAZHQHElP5ckdFRoB0vOaAhHQJYRW4XoC+11fZQoaAZHQHHYzej2zv9oB0vWaAhHQJYRs2zfJmx1fZQoaAZHQHCkn/95yENoB0vQaAhHQJYSK1/lQuV1fZQoaAZHQHCbwDifg75oB0vkaAhHQJYSYZydWhh1fZQoaAZHQHGuDGHYYixoB02JAWgIR0CWEo0HhS9/dX2UKGgGR0BwOsqSX+l1aAdLvWgIR0CWErGh24d7dX2UKGgGR0BytVpGnXNDaAdLwWgIR0CWEsQswtaqdX2UKGgGR0BxqjzundftaAdLzWgIR0CWEyNayKNydX2UKGgGR0Bx+yvnr6ciaAdLumgIR0CWFE6SDAaedX2UKGgGR0A52QCjk+5faAdLYmgIR0CWFJuq3mV8dX2UKGgGR0BxwPMr3CbdaAdL02gIR0CWFOd7OVxCdX2UKGgGR0BzBACMglniaAdL6GgIR0CWFOmTTvy9dX2UKGgGR0BzeZCTlkpaaAdLxmgIR0CWFQZ/CqIadX2UKGgGR0By9FaV2Rq5aAdL6GgIR0CWFR0qpcX4dX2UKGgGR0ByKUv7FbV0aAdL1GgIR0CWFTHhS9/SdX2UKGgGR0BxkodLg4wRaAdL3WgIR0CWFTaK1og3dX2UKGgGR0Bzm6hf0EowaAdLwWgIR0CWFbiQkonbdX2UKGgGR0BwUzzZpSJkaAdL0WgIR0CWFbLcbiqAdX2UKGgGR0ByZ+85CF9KaAdL0GgIR0CWFmJFLFn7dX2UKGgGR0BzO5II4VASaAdLwWgIR0CWFoTG5tm+dX2UKGgGR0B0aWzSkTHsaAdLvGgIR0CWF1Ucn3L3dX2UKGgGR0BwVRiz9jwyaAdL0GgIR0CWF2myxA0LdX2UKGgGR0BxjZV5rxiHaAdL12gIR0CWF2Hpr1ujdX2UKGgGR0BzGD5TIeYEaAdL5WgIR0CWF9kPtlZpdX2UKGgGR0Bvx+gi/wiJaAdLu2gIR0CWGJWWQfZFdX2UKGgGR0BwpMcJdB0IaAdLw2gIR0CWGVRaX8fndX2UKGgGR0By3xSVGCqZaAdLqWgIR0CWGV6pYLb6dX2UKGgGR0BxOBpUPxx2aAdLvGgIR0CWGaLOiWVvdX2UKGgGR0BwdhMPBi1BaAdLyWgIR0CWGdRT0g8sdX2UKGgGR0ByTi1eBxxUaAdLy2gIR0CWGikhib2EdX2UKGgGR0BzY6bBoEjgaAdL4WgIR0CWGqPX05EMdX2UKGgGR0Bx04kt29teaAdL82gIR0CWGs80UGmldX2UKGgGR0BuUZRAKOT8aAdL0GgIR0CWGuwT/Q0GdX2UKGgGR0BylOhi9ZieaAdL0GgIR0CWGt4lyBCldX2UKGgGR0BxsOij+JgtaAdLwmgIR0CWGzsXzlLfdX2UKGgGR0BzGhmWdEsraAdL5GgIR0CWHBeD3/PxdX2UKGgGR0ByNug8KXv6aAdLx2gIR0CWHEMX7+DOdX2UKGgGR0By+2FPBSDRaAdLtWgIR0CWHFewLVnVdX2UKGgGR0BxdL84xUNsaAdLzGgIR0CWHGajesPrdX2UKGgGR0ByTcVVPva2aAdL4mgIR0CWHh9sJpnIdX2UKGgGR0ByXLf642CNaAdLu2gIR0CWHie54GD+dX2UKGgGR0BxhTzundftaAdLzmgIR0CWHixtpEhJdX2UKGgGR0ByWthkRSP2aAdLtWgIR0CWHlMju8brdX2UKGgGR0BvUk1l5GBnaAdLzWgIR0CWHmW69TP0dX2UKGgGR0ByLxFQVKwqaAdL1mgIR0CWHlfMwDeTdX2UKGgGR0BLtqtHQQcxaAdLY2gIR0CWHnIX0oSddX2UKGgGR0BxamJ/G2kSaAdLxmgIR0CWHyJHRTjvdX2UKGgGR0BweOkadc0MaAdLymgIR0CWH2qKP4mDdX2UKGgGR0BxOMDnvDxcaAdLyGgIR0CWH29CeEqUdX2UKGgGR0BzJ1i6QNkOaAdL2mgIR0CWH9xRVIZqdX2UKGgGR0Bw1luR9w3paAdLy2gIR0CWH+D7ZWaMdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 992, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 16, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVZwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUkM6XFVzZXJzXHJhalxhbmFjb25kYTNcZW52c1xybFxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVZwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUkM6XFVzZXJzXHJhalxhbmFjb25kYTNcZW52c1xybFxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Windows-10-10.0.19045-SP0 10.0.19045", "Python": "3.10.14", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0", "GPU Enabled": "True", "Numpy": "1.24.3", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f00f0fc10493ff7ed0ed514034960cd38528182de77ff428abffd819f077e23d
|
3 |
+
size 147859
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -26,12 +26,12 @@
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -45,13 +45,28 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
@@ -69,7 +84,7 @@
|
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
-
":serialized:": "
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
@@ -77,23 +92,8 @@
|
|
77 |
"_np_random": null
|
78 |
},
|
79 |
"n_envs": 16,
|
80 |
-
"n_steps": 1024,
|
81 |
-
"gamma": 0.999,
|
82 |
-
"gae_lambda": 0.98,
|
83 |
-
"ent_coef": 0.01,
|
84 |
-
"vf_coef": 0.5,
|
85 |
-
"max_grad_norm": 0.5,
|
86 |
-
"batch_size": 64,
|
87 |
-
"n_epochs": 4,
|
88 |
-
"clip_range": {
|
89 |
-
":type:": "<class 'function'>",
|
90 |
-
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
-
},
|
92 |
-
"clip_range_vf": null,
|
93 |
-
"normalize_advantage": true,
|
94 |
-
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
-
":serialized:": "
|
98 |
}
|
99 |
}
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x0000022538321090>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x0000022538321120>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x00000225383211B0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x0000022538321240>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x00000225383212D0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x0000022538321360>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x00000225383213F0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x0000022538321480>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x0000022538321510>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x00000225383215A0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x0000022538321630>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x00000225383216C0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x000002253813FE00>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1716823778851396600,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE2hZT3DPTq6ujsiuyBWwTcTNSS7u2vGOQAAAAAAAAAAM9QsPcu8Kj+NWXM9SsYPv+mAmT2Eapq9AAAAAAAAAABmuMm9MbOnP1GWxL4hW/u+VVFgvtuwqL4AAAAAAAAAAM08GTuTIHg/BeHuPJLwNL/Nexw9XjajvAAAAAAAAAAASvK2PrbAIT8MHbe9nabxvsAHhD6TdSy+AAAAAAAAAAAAUjE8e+CSuhUyVLmzXkm0N8svOzvNdTgAAIA/AACAPzN3MbzDxUi6DuCWNFY7FTDHfTE78hBxswAAgD8AAIA/A9VWvjmlGj86a48+VnvUvtF4jL2CKZA+AAAAAAAAAAAzPLY9schOPgZm5L1DYPW+IxQXPeDS77wAAAAAAAAAAAAQKr7HPQE/RTkQPUuUHL8icSa+iizDPQAAAAAAAAAAc/DkPZKDHD6z2NK+x+DhvtRo372o5pW+AAAAAAAAAABmpow87x+dPwb8mT1ltSC/6+sNPffRxD0AAAAAAAAAAE2vWz2fS6S7i6rUO/82kjx/NQO9jXJ4PQAAgD8AAIA/mvC4PWsxlT/JUj0+krgvvzMECD5Vr3E9AAAAAAAAAACaVeE8Ba+MPkgberx1mdW+6InnPLLhbLwAAAAAAAAAALMrVr7sLS8/qgo8PtsDFL/L4tO94l7sPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV5gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/NuARTS9eMAWyUS9eMAXSUR0CV0bVGTcIrdX2UKGgGR0Bu4CIDYAbRaAdLw2gIR0CV0frJbMX8dX2UKGgGR0By2KOZLIxQaAdL32gIR0CV0h+Lm6oVdX2UKGgGR0BywXrqt5lfaAdL3GgIR0CV0tmsvIwNdX2UKGgGR0BydpG7SRbKaAdLwGgIR0CV0xfDDTBqdX2UKGgGR0BuroyEcsDoaAdLzmgIR0CV04pVS4vwdX2UKGgGR0Bxp8btJFspaAdNHgFoCEdAldPYUzsQd3V9lChoBkdAcdaJJXhfjWgHS75oCEdAldQri++M63V9lChoBkdAc2lvo/zJ62gHS85oCEdAldSsE3bVSXV9lChoBkdAU0kqgAZKnWgHTegDaAhHQJXVRP69CeF1fZQoaAZHQHIyVHe7+UBoB0u7aAhHQJXVsvnKW9l1fZQoaAZHQHElZxFRYRxoB0vRaAhHQJXVx7ojfN11fZQoaAZHQHDDyJwbVBloB0u9aAhHQJXWAKVpsXV1fZQoaAZHQHHDizollbxoB0utaAhHQJXWOoMrmQt1fZQoaAZHQHLKyxJNCZ5oB0u+aAhHQJXWwc4o7V91fZQoaAZHQHHMPJ3gUDdoB0vDaAhHQJXWygi/wiJ1fZQoaAZHQHM6/wAlv61oB0vGaAhHQJXXXVmSQo11fZQoaAZHQHKIcwco6S1oB0vaaAhHQJXXvsiSq2l1fZQoaAZHQHHgLE9+w1RoB0vAaAhHQJXX2Tkhib51fZQoaAZHQHBePnB+F11oB0vPaAhHQJXY6WY4Qz11fZQoaAZHQHMfU2DQJHBoB0vgaAhHQJXY6WY4Qz11fZQoaAZHQHIL8T37DVJoB0u3aAhHQJXY48YAKfF1fZQoaAZHQHDDw3xWkrRoB0vaaAhHQJYIZ7u2JBR1fZQoaAZHQG9JpAlfJFNoB0u+aAhHQJYIh7/n4fx1fZQoaAZHQHBUcmKIi1RoB0vAaAhHQJYJQmShakh1fZQoaAZHQHLUFaGHpKVoB0u5aAhHQJYJkUUO/cp1fZQoaAZHQHHlRnanJkpoB0vIaAhHQJYJ7iVB2Oh1fZQoaAZHQHHc6wt8NQVoB0u2aAhHQJYJ9mDlHSZ1fZQoaAZHQHCE7e/Ho5hoB0vUaAhHQJYKZFw1ivx1fZQoaAZHQHDMo60Y0l9oB0u7aAhHQJYKiP8yeqd1fZQoaAZHQHDSwiV0Lc9oB0vCaAhHQJYLLgGbCrN1fZQoaAZHQHGwzDbah6BoB0u4aAhHQJYLYZZSvTx1fZQoaAZHQHEZqkZaV2RoB0vHaAhHQJYLmbjLjgh1fZQoaAZHQHK2+YplSTBoB0v3aAhHQJYL0vtdAxB1fZQoaAZHQHKQQEEC/49oB0u5aAhHQJYMTufEn9h1fZQoaAZHQHAZjH0btJFoB0vBaAhHQJYMfNwBHTZ1fZQoaAZHQG4mUtqYZ2poB0u6aAhHQJYM2cYqG1x1fZQoaAZHQHKryADq4YtoB0vaaAhHQJYNHVf/m1Z1fZQoaAZHQHFLQ/oq0+loB0vHaAhHQJYOC8jAzpJ1fZQoaAZHQHMzN6w+t8xoB0vqaAhHQJYOFhYvFm51fZQoaAZHQHJeYlpoK2NoB0u6aAhHQJYOKrR0EHN1fZQoaAZHQHHlzLbHp8poB0vTaAhHQJYPfx5LRKJ1fZQoaAZHQHO3mNzbN8poB0u9aAhHQJYPvcafjCJ1fZQoaAZHQGTht5D7ZWdoB03oA2gIR0CWEAZHuqm1dX2UKGgGR0BvYHNcGC7LaAdNAgFoCEdAlhAGR7qptXV9lChoBkdAcKQJlrdnCmgHS7poCEdAlhAfvWpZOnV9lChoBkdAcVjaYu01ImgHS8xoCEdAlhBOxB3RonV9lChoBkdAcDNRqGlANWgHS75oCEdAlhB4JRfnfXV9lChoBkdAc5jGy5Zr6GgHTRUBaAhHQJYQ+NipeeF1fZQoaAZHQHElP5ckdFRoB0vOaAhHQJYRW4XoC+11fZQoaAZHQHHYzej2zv9oB0vWaAhHQJYRs2zfJmx1fZQoaAZHQHCkn/95yENoB0vQaAhHQJYSK1/lQuV1fZQoaAZHQHCbwDifg75oB0vkaAhHQJYSYZydWhh1fZQoaAZHQHGuDGHYYixoB02JAWgIR0CWEo0HhS9/dX2UKGgGR0BwOsqSX+l1aAdLvWgIR0CWErGh24d7dX2UKGgGR0BytVpGnXNDaAdLwWgIR0CWEsQswtaqdX2UKGgGR0BxqjzundftaAdLzWgIR0CWEyNayKNydX2UKGgGR0Bx+yvnr6ciaAdLumgIR0CWFE6SDAaedX2UKGgGR0A52QCjk+5faAdLYmgIR0CWFJuq3mV8dX2UKGgGR0BxwPMr3CbdaAdL02gIR0CWFOd7OVxCdX2UKGgGR0BzBACMglniaAdL6GgIR0CWFOmTTvy9dX2UKGgGR0BzeZCTlkpaaAdLxmgIR0CWFQZ/CqIadX2UKGgGR0By9FaV2Rq5aAdL6GgIR0CWFR0qpcX4dX2UKGgGR0ByKUv7FbV0aAdL1GgIR0CWFTHhS9/SdX2UKGgGR0BxkodLg4wRaAdL3WgIR0CWFTaK1og3dX2UKGgGR0Bzm6hf0EowaAdLwWgIR0CWFbiQkonbdX2UKGgGR0BwUzzZpSJkaAdL0WgIR0CWFbLcbiqAdX2UKGgGR0ByZ+85CF9KaAdL0GgIR0CWFmJFLFn7dX2UKGgGR0BzO5II4VASaAdLwWgIR0CWFoTG5tm+dX2UKGgGR0B0aWzSkTHsaAdLvGgIR0CWF1Ucn3L3dX2UKGgGR0BwVRiz9jwyaAdL0GgIR0CWF2myxA0LdX2UKGgGR0BxjZV5rxiHaAdL12gIR0CWF2Hpr1ujdX2UKGgGR0BzGD5TIeYEaAdL5WgIR0CWF9kPtlZpdX2UKGgGR0Bvx+gi/wiJaAdLu2gIR0CWGJWWQfZFdX2UKGgGR0BwpMcJdB0IaAdLw2gIR0CWGVRaX8fndX2UKGgGR0By3xSVGCqZaAdLqWgIR0CWGV6pYLb6dX2UKGgGR0BxOBpUPxx2aAdLvGgIR0CWGaLOiWVvdX2UKGgGR0BwdhMPBi1BaAdLyWgIR0CWGdRT0g8sdX2UKGgGR0ByTi1eBxxUaAdLy2gIR0CWGikhib2EdX2UKGgGR0BzY6bBoEjgaAdL4WgIR0CWGqPX05EMdX2UKGgGR0Bx04kt29teaAdL82gIR0CWGs80UGmldX2UKGgGR0BuUZRAKOT8aAdL0GgIR0CWGuwT/Q0GdX2UKGgGR0BylOhi9ZieaAdL0GgIR0CWGt4lyBCldX2UKGgGR0BxsOij+JgtaAdLwmgIR0CWGzsXzlLfdX2UKGgGR0BzGhmWdEsraAdL5GgIR0CWHBeD3/PxdX2UKGgGR0ByNug8KXv6aAdLx2gIR0CWHEMX7+DOdX2UKGgGR0By+2FPBSDRaAdLtWgIR0CWHFewLVnVdX2UKGgGR0BxdL84xUNsaAdLzGgIR0CWHGajesPrdX2UKGgGR0ByTcVVPva2aAdL4mgIR0CWHh9sJpnIdX2UKGgGR0ByXLf642CNaAdLu2gIR0CWHie54GD+dX2UKGgGR0BxhTzundftaAdLzmgIR0CWHixtpEhJdX2UKGgGR0ByWthkRSP2aAdLtWgIR0CWHlMju8brdX2UKGgGR0BvUk1l5GBnaAdLzWgIR0CWHmW69TP0dX2UKGgGR0ByLxFQVKwqaAdL1mgIR0CWHlfMwDeTdX2UKGgGR0BLtqtHQQcxaAdLY2gIR0CWHnIX0oSddX2UKGgGR0BxamJ/G2kSaAdLxmgIR0CWHyJHRTjvdX2UKGgGR0BweOkadc0MaAdLymgIR0CWH2qKP4mDdX2UKGgGR0BxOMDnvDxcaAdLyGgIR0CWH29CeEqUdX2UKGgGR0BzJ1i6QNkOaAdL2mgIR0CWH9xRVIZqdX2UKGgGR0Bw1luR9w3paAdLy2gIR0CWH+D7ZWaMdWUu"
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 992,
|
55 |
+
"n_steps": 1024,
|
56 |
+
"gamma": 0.995,
|
57 |
+
"gae_lambda": 0.98,
|
58 |
+
"ent_coef": 0.01,
|
59 |
+
"vf_coef": 0.5,
|
60 |
+
"max_grad_norm": 0.5,
|
61 |
+
"batch_size": 128,
|
62 |
+
"n_epochs": 16,
|
63 |
+
"clip_range": {
|
64 |
+
":type:": "<class 'function'>",
|
65 |
+
":serialized:": "gAWVZwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUkM6XFVzZXJzXHJhalxhbmFjb25kYTNcZW52c1xybFxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
66 |
+
},
|
67 |
+
"clip_range_vf": null,
|
68 |
+
"normalize_advantage": true,
|
69 |
+
"target_kl": null,
|
70 |
"observation_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
84 |
},
|
85 |
"action_space": {
|
86 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
87 |
+
":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
88 |
"n": "4",
|
89 |
"start": "0",
|
90 |
"_shape": [],
|
|
|
92 |
"_np_random": null
|
93 |
},
|
94 |
"n_envs": 16,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVZwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUkM6XFVzZXJzXHJhalxhbmFjb25kYTNcZW52c1xybFxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
98 |
}
|
99 |
}
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32b3da1fd9716a5c3069a7d979f9e851298ccc457f77e2ce959233c64def80c6
|
3 |
+
size 88490
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43762
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4585badd65c768df034d3f2e9a5f2684798b0d260dd4afee92b4bdd0ffb67d01
|
3 |
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 864
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb4dde0c1ad63b7740276006a06cc491b21b407ea6c889928c223ec77ddad79f
|
3 |
size 864
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,9 +1,8 @@
|
|
1 |
-
- OS:
|
2 |
-
- Python: 3.10.
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
-
- PyTorch: 2.3.0
|
5 |
- GPU Enabled: True
|
6 |
-
- Numpy: 1.
|
7 |
-
- Cloudpickle:
|
8 |
- Gymnasium: 0.28.1
|
9 |
-
- OpenAI Gym: 0.25.2
|
|
|
1 |
+
- OS: Windows-10-10.0.19045-SP0 10.0.19045
|
2 |
+
- Python: 3.10.14
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.3.0
|
5 |
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.3
|
7 |
+
- Cloudpickle: 3.0.0
|
8 |
- Gymnasium: 0.28.1
|
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 279.3141822, "std_reward": 15.70471490562981, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-05-27T21:25:25.929724"}
|