File size: 28,217 Bytes
627ef7f
 
 
 
 
 
 
c2f9933
627ef7f
a736a2a
627ef7f
962fd50
 
627ef7f
962fd50
 
 
 
 
 
 
 
 
 
 
c2f9933
962fd50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
627ef7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2f9933
627ef7f
 
 
 
 
 
 
 
 
c2f9933
627ef7f
 
c2f9933
627ef7f
 
c2f9933
627ef7f
 
c2f9933
627ef7f
 
c2f9933
627ef7f
 
c2f9933
627ef7f
 
c2f9933
627ef7f
 
c2f9933
627ef7f
 
c2f9933
627ef7f
 
c2f9933
627ef7f
 
c2f9933
627ef7f
 
c2f9933
627ef7f
 
c2f9933
627ef7f
 
c2f9933
627ef7f
 
c2f9933
627ef7f
 
c2f9933
627ef7f
 
c2f9933
627ef7f
 
c2f9933
627ef7f
 
c2f9933
627ef7f
962fd50
 
 
 
627ef7f
 
c2f9933
627ef7f
962fd50
3677c5b
962fd50
3677c5b
962fd50
 
 
3677c5b
962fd50
3677c5b
962fd50
3677c5b
962fd50
 
38a4be7
962fd50
 
 
627ef7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
962fd50
627ef7f
 
c2f9933
627ef7f
 
c2f9933
 
 
627ef7f
 
 
 
 
 
 
 
 
c2f9933
627ef7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de3ab2c
962fd50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
627ef7f
 
 
 
 
 
 
 
 
 
c2f9933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
627ef7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2f9933
 
627ef7f
c2f9933
 
 
 
627ef7f
c2f9933
 
 
 
 
627ef7f
 
 
a736a2a
c2f9933
 
627ef7f
 
 
 
 
 
 
c2f9933
 
 
627ef7f
c2f9933
627ef7f
4fdf2a3
627ef7f
c2f9933
627ef7f
 
 
 
 
 
 
 
c2f9933
 
627ef7f
 
a736a2a
627ef7f
 
c2f9933
627ef7f
 
 
 
 
c2f9933
627ef7f
 
 
c2f9933
627ef7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fdf2a3
627ef7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2f9933
627ef7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a736a2a
627ef7f
 
 
 
 
 
 
c2f9933
 
 
 
 
 
 
627ef7f
4fdf2a3
627ef7f
 
a736a2a
627ef7f
c2f9933
627ef7f
a736a2a
 
 
627ef7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a736a2a
627ef7f
a736a2a
 
 
 
 
627ef7f
a736a2a
627ef7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
962fd50
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
---
tags:
- sentence-transformers
- sparse-encoder
- sparse
- splade
- generated_from_trainer
- dataset_size:1200000
- loss:SpladeLoss
- loss:SparseMarginMSELoss
- loss:FlopsLoss
base_model:
- prajjwal1/bert-tiny
widget:
- text: >-
    Most Referenced:report - Return to the USDOJ/OIG Home Page - US Department
    of JusticeReturn to the USDOJ/OIG Home Page - US Department of Justice.
    Opinion:Roberts: Feds to stop using private prisons.
- text: >-
    Paul O'Neill, the founder of the Trans-Siberian Orchestra (pictured) has
    died at age 61. Paul O'Neill, the founder of the popular Christmas-themed
    rock ensemble Trans-Siberian Orchestra has died. A statement on the group's
    Facebook page reads: The entire Trans-Siberian Orchestra family, past and
    present, is heartbroken to share the devastating news that Paul O’Neill has
    passed away from chronic illness.
- text: meaning for concern
- text: >-
    Additional Tips. 1  Do not rub the ink stains as it can spread the stains
    further. 2  Make sure you test the cleaning solution on a small, hidden area
    to check if it is suitable for the material. 3  In case an ink stain has
    become old and dried, the above mentioned home remedies may not be
    effective.arpet: For ink stained spots on a carpet, you may apply a paste of
    cornstarch and milk. Leave it for a few hours before brushing it off.
    Finally, clean the residue with a vacuum cleaner. Leather: Try using a
    leather shampoo or a leather ink remover for removing ink stains from
    leather items.
- text: >-
    See below: 1. Get your marriage license. Before you can change your name,
    you'll need the original (or certified) marriage license with the raised
    seal and your new last name on it. Call the clerk's office where your
    license was filed to get copies if one wasn't automatically sent to you. 2.
    Change your Social Security card.
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
model-index:
- name: SPLADE Sparse Encoder
  results:
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: dot_accuracy@1
      value: 0.4772
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.793
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.8964
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.96
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.4772
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.2713333333333333
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.18644000000000002
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.10094000000000002
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.4616666666666666
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.7798833333333334
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.8874
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.95595
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.721747648718731
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.6489996031746051
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.6446961471449598
      name: Dot Map@100
    - type: query_active_dims
      value: 18.334199905395508
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9993993119747921
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 121.65303042911474
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9960142510179831
      name: Corpus Sparsity Ratio
datasets:
- microsoft/ms_marco
language:
- en
---

# SPLADE Sparse Encoder

This is a SPLADE sparse retrieval model based on BERT-Tiny (4M) that was trained by distilling a Cross-Encoder on the MSMARCO dataset. The cross-encoder used was [ms-marco-MiniLM-L6-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L6-v2). 

This Tiny SPLADE model beats `BM25` by `65.6%` on the MSMARCO benchmark. While this model is `15x` smaller than Naver's official `splade-v3-distilbert`, is posesses `80%` of it's performance on MSMARCO. This model is small enough to be used without a GPU on a dataset of a few thousand documents. 

- `Collection:` https://huggingface.co/collections/rasyosef/splade-tiny-msmarco-687c548c0691d95babf65b70
- `Distillation Dataset:` https://huggingface.co/datasets/yosefw/msmarco-train-distil-v2
- `Code:` https://github.com/rasyosef/splade-tiny-msmarco

## Performance

The splade models were evaluated on 55 thousand queries and 8.84 million documents from the [MSMARCO](https://huggingface.co/datasets/microsoft/ms_marco) dataset.

||Size (# Params)|MRR@10 (MS MARCO dev)|
|:---|:----|:-------------------|
|`BM25`|-|18.0|-|-|
|`rasyosef/splade-tiny`|4.4M|30.9|
|`rasyosef/splade-mini`|11.2M|33.2|
|`naver/splade-v3-distilbert`|67.0M|38.7|

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("rasyosef/splade-tiny")
# Run inference
queries = [
    "what do i need to change my name on my license in ma",
]
documents = [
    'Change your name on MA state-issued ID such as driver’s license or MA ID card. All documents you bring to RMV need to be originals or certified copies by the issuing agency. PAPERWORK NEEDED: Proof of legal name change — A court order showing your legal name change. Your Social Security Card with your new legal name change',
    "See below: 1. Get your marriage license. Before you can change your name, you'll need the original (or certified) marriage license with the raised seal and your new last name on it. Call the clerk's office where your license was filed to get copies if one wasn't automatically sent to you. 2. Change your Social Security card.",
    "You'll keep the same number—just your name will be different. Mail in your application to the local Social Security Administration office. You should get your new card within 10 business days. 3. Change your license at the DMV. Take a trip to the local Department of Motor Vehicles office to get a new license with your new last name. Bring every form of identification you can get your hands on—your old license, your certified marriage certificate and, most importantly, your new Social Security card.",
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 30522] [3, 30522]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[16.6297, 13.4552, 10.1923]])
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Model Details

### Model Description
- **Model Type:** SPLADE Sparse Encoder
- **Base model:** [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 30522 dimensions
- **Similarity Function:** Dot Product
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)

### Full Model Architecture

```
SparseEncoder(
  (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertForMaskedLM'})
  (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
```

## More
<details><summary>Click to expand</summary>

## Evaluation

### Metrics

#### Sparse Information Retrieval

* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)

| Metric                | Value      |
|:----------------------|:-----------|
| dot_accuracy@1        | 0.4772     |
| dot_accuracy@3        | 0.793      |
| dot_accuracy@5        | 0.8964     |
| dot_accuracy@10       | 0.96       |
| dot_precision@1       | 0.4772     |
| dot_precision@3       | 0.2713     |
| dot_precision@5       | 0.1864     |
| dot_precision@10      | 0.1009     |
| dot_recall@1          | 0.4617     |
| dot_recall@3          | 0.7799     |
| dot_recall@5          | 0.8874     |
| dot_recall@10         | 0.9559     |
| **dot_ndcg@10**       | **0.7217** |
| dot_mrr@10            | 0.649      |
| dot_map@100           | 0.6447     |
| query_active_dims     | 18.3342    |
| query_sparsity_ratio  | 0.9994     |
| corpus_active_dims    | 121.653    |
| corpus_sparsity_ratio | 0.996      |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 1,200,000 training samples
* Columns: <code>query</code>, <code>positive</code>, <code>negative_1</code>, <code>negative_2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                            | positive                                                                            | negative_1                                                                          | negative_2                                                                          | label                              |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------|
  | type    | string                                                                           | string                                                                              | string                                                                              | string                                                                              | list                               |
  | details | <ul><li>min: 4 tokens</li><li>mean: 9.08 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 79.02 tokens</li><li>max: 192 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 78.24 tokens</li><li>max: 230 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 75.26 tokens</li><li>max: 230 tokens</li></ul> | <ul><li>size: 2 elements</li></ul> |
* Samples:
  | query                                                           | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | negative_1                                                                                                                                                                                                                                                                                                                                                                                                                                  | negative_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | label                                                |
  |:----------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------|
  | <code>does alzheimer's affect sleep</code>                      | <code>People with Alzheimer’s disease go through many changes, and sleep problems are often some of the most noticeable. Most adults have changes in their sleep patterns as they age. But the problems are more severe and happen more often for people with Alzheimer’s.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <code>Could the position you SLEEP in affect your risk of Alzheimer's? People who sleep on their side enable their brain to 'detox' better while they rest. While asleep, brain is hard at work removing toxins that build up in the day. If left to build up, these toxins can cause Alzheimer's and Parkinson's.</code>                                                                                                                   | <code>The Scary Connection Between Snoring and Dementia. For more, visit TIME Health. If you don't snore, you likely know someone who does. Between 19% and 40% of adults snore when they sleep, and that percentage climbs even higher, particularly for men, as we age.</code>                                                                                                                                                                                                                                                                             | <code>[1.407266616821289, 10.169305801391602]</code> |
  | <code>what is fy in steel design</code>                         | <code>Since the yield strength of the steel is quite clearly defined and controlled, this establishes a very precise reference in structural investigations. An early design decision is that for the yield strength (specified by the Grade of steel used) that is to be used in the design work.Several different grades of steel may be used for large projects, with a minimum grade for ordinary tasks and higher grades for more demanding ones.ost steel used for reinforcement is highly ductile in nature. Its usable strength is its yield strength, as this stress condition initiates such a magnitude of deformation (into the plastic yielding range of the steel), that major cracking will occur in the concrete.</code> | <code>fy is the yield point of the material. E is the symbol for Young's Modulus of the material. E can be measured by dividing the elastic stress by the elastic strain.That is, this measurement must be made before the yield point of the material is reached.y is the yield point of the material. E is the symbol for Young's Modulus of the material. E can be measured by dividing the elastic stress by the elastic strain.</code> | <code>The longest dimension of the cant. WT is 13'. Using ASTM A992 carbon steel, a WT9x35.5 is at full bending stress and deflection limits. (Fy = 50 ksi). The only information I've found about using stainless for structural design is that type 304 is usually used.This yield strength (Fy) is only equal to 39 or 42ksi.sing ASTM A992 carbon steel, a WT9x35.5 is at full bending stress and deflection limits. (Fy = 50 ksi). The only information I've found about using stainless for structural design is that type 304 is usually used.</code> | <code>[0.5, 0.5]</code>                              |
  | <code>most common nutritional deficiencies for teenagers</code> | <code>: Appendix B: Vitamin and Mineral Deficiencies in the U.S. Some American adults get too little vitamin D, vitamin E, magnesium, calcium, vitamin A and vitamin C (Table B1). More than 40 percent of adults have dietary intakes of vitamin A, C, D and E, calcium and magnesium below the average requirement for their age and gender. Inadequate intake of vitamins and minerals is most common among 14-to-18-year-old teenagers. Adolescent girls have lower nutrient intake than boys (Berner 2014; Fulgoni 2011). But nutrient deficiencies are rare among younger American children; the exceptions are dietary vitamin D and E, for which intake is low for all Americans, and calcium.</code>                            | <code>Common Nutritional Deficiencies. 10 Most Common Nutritional Deficiencies.. Calcium. Calcium is one of the most abundant minerals in your body, yet most people still manage to have a calcium deficiency. Calcium is best know for adding strength to your bones and teeth.</code>                                                                                                                                                    | <code>1) Vitamin D–Vitamin D deficiency is common in infants born to mothers with low levels of Vitamin D. Severe deficiency of this nutrient in infancy and early childhood can lead to the development of Rickets, a disease that affects bone formation and causes bow-legs.</code>                                                                                                                                                                                                                                                                       | <code>[3.182860851287842, 7.834665775299072]</code>  |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
  ```json
  {
      "loss": "SparseMarginMSELoss",
      "document_regularizer_weight": 0.2,
      "query_regularizer_weight": 0.3
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 5
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.05
- `fp16`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `push_to_hub`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.05
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}

</details>

### Training Logs
| Epoch   | Step       | Training Loss | dot_ndcg@10 |
|:-------:|:----------:|:-------------:|:-----------:|
| 1.0     | 37500      | 11.4095       | 0.7103      |
| 2.0     | 75000      | 10.5305       | 0.7139      |
| 3.0     | 112500     | 9.5368        | 0.7197      |
| **4.0** | **150000** | **8.717**     | **0.7216**  |
| 5.0     | 187500     | 8.3094        | 0.7217      |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.11.13
- Sentence Transformers: 5.0.0
- Transformers: 4.54.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 4.0.0
- Tokenizers: 0.21.2

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### SpladeLoss
```bibtex
@misc{formal2022distillationhardnegativesampling,
      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
      year={2022},
      eprint={2205.04733},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2205.04733},
}
```

#### SparseMarginMSELoss
```bibtex
@misc{hofstätter2021improving,
    title={Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation},
    author={Sebastian Hofstätter and Sophia Althammer and Michael Schröder and Mete Sertkan and Allan Hanbury},
    year={2021},
    eprint={2010.02666},
    archivePrefix={arXiv},
    primaryClass={cs.IR}
}
```

#### FlopsLoss
```bibtex
@article{paria2020minimizing,
    title={Minimizing flops to learn efficient sparse representations},
    author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
    journal={arXiv preprint arXiv:2004.05665},
    year={2020}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> 
</details>