Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/Llama-3.2-3B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 9b4cab2992cdb07f_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/9b4cab2992cdb07f_train_data.json
  type:
    field_input: input
    field_instruction: instruction
    field_output: output
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
device_map:
  ? ''
  : 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/0419afd4-d740-497b-8afb-e4c2d4a21d7c
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 1779
micro_batch_size: 4
mlflow_experiment_name: /tmp/9b4cab2992cdb07f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.033916240452578315
wandb_entity: null
wandb_mode: online
wandb_name: 30612698-6e4a-41b9-a416-94b6b03904c8
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 30612698-6e4a-41b9-a416-94b6b03904c8
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

0419afd4-d740-497b-8afb-e4c2d4a21d7c

This model is a fine-tuned version of unsloth/Llama-3.2-3B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7884

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 1779

Training results

Training Loss Epoch Step Validation Loss
1.4843 0.0002 1 1.7253
0.9523 0.0225 100 0.8943
0.9478 0.0449 200 0.8860
0.9653 0.0674 300 0.8736
0.7676 0.0899 400 0.8678
0.9193 0.1123 500 0.8550
0.9976 0.1348 600 0.8524
1.0777 0.1573 700 0.8414
0.892 0.1797 800 0.8353
1.0606 0.2022 900 0.8260
0.9507 0.2247 1000 0.8176
0.8807 0.2471 1100 0.8107
1.0414 0.2696 1200 0.8034
0.9991 0.2921 1300 0.7983
0.8961 0.3146 1400 0.7936
0.9268 0.3370 1500 0.7911
0.7766 0.3595 1600 0.7893
0.9304 0.3820 1700 0.7884

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for rayonlabs/Llama-3_2-3B-d1808b9d666dadb7_dataset_json_X-Amz-Algorithm_AWS4-HMAC-SHA256_X-Amz-Credential_AKI

Adapter
(363)
this model