train_boolq_1745950274
This model is a fine-tuned version of google/gemma-3-1b-it on the boolq dataset. It achieves the following results on the evaluation set:
- Loss: 2.9271
- Num Input Tokens Seen: 34633072
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 123
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- training_steps: 40000
Training results
Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
---|---|---|---|---|
2.6453 | 0.0943 | 200 | 3.2031 | 174096 |
3.5809 | 0.1886 | 400 | 3.1503 | 344560 |
3.5279 | 0.2829 | 600 | 3.1043 | 517536 |
2.8551 | 0.3772 | 800 | 3.0762 | 696016 |
2.7868 | 0.4715 | 1000 | 3.0509 | 868992 |
2.6766 | 0.5658 | 1200 | 3.0614 | 1040544 |
3.84 | 0.6601 | 1400 | 3.0431 | 1211680 |
2.3861 | 0.7544 | 1600 | 3.0519 | 1381792 |
3.4698 | 0.8487 | 1800 | 3.0226 | 1559456 |
2.9566 | 0.9430 | 2000 | 3.0275 | 1735840 |
2.8968 | 1.0372 | 2200 | 3.0316 | 1910848 |
3.1856 | 1.1315 | 2400 | 3.0049 | 2081696 |
3.4134 | 1.2258 | 2600 | 3.0010 | 2255952 |
2.9332 | 1.3201 | 2800 | 3.0122 | 2427152 |
2.9351 | 1.4144 | 3000 | 3.0129 | 2601296 |
2.5434 | 1.5087 | 3200 | 2.9970 | 2774672 |
3.1122 | 1.6030 | 3400 | 2.9784 | 2944896 |
2.7179 | 1.6973 | 3600 | 2.9600 | 3117216 |
2.8625 | 1.7916 | 3800 | 2.9709 | 3287952 |
2.7659 | 1.8859 | 4000 | 2.9735 | 3464640 |
2.9328 | 1.9802 | 4200 | 2.9566 | 3638880 |
3.0105 | 2.0745 | 4400 | 2.9613 | 3812624 |
3.4794 | 2.1688 | 4600 | 2.9646 | 3986544 |
2.7816 | 2.2631 | 4800 | 2.9783 | 4158272 |
3.1668 | 2.3574 | 5000 | 2.9668 | 4328240 |
3.0955 | 2.4517 | 5200 | 2.9730 | 4507760 |
2.8676 | 2.5460 | 5400 | 2.9506 | 4681664 |
3.3803 | 2.6403 | 5600 | 2.9642 | 4856928 |
3.1192 | 2.7346 | 5800 | 2.9736 | 5024976 |
3.3355 | 2.8289 | 6000 | 2.9883 | 5202368 |
3.3114 | 2.9231 | 6200 | 2.9882 | 5377360 |
2.1893 | 3.0174 | 6400 | 2.9834 | 5550480 |
3.533 | 3.1117 | 6600 | 2.9786 | 5724080 |
2.7837 | 3.2060 | 6800 | 2.9849 | 5896688 |
3.127 | 3.3003 | 7000 | 2.9557 | 6070544 |
2.7459 | 3.3946 | 7200 | 2.9538 | 6244624 |
3.2816 | 3.4889 | 7400 | 2.9563 | 6416176 |
3.3454 | 3.5832 | 7600 | 2.9709 | 6587616 |
2.7435 | 3.6775 | 7800 | 2.9540 | 6759696 |
3.1908 | 3.7718 | 8000 | 2.9497 | 6932384 |
2.6196 | 3.8661 | 8200 | 2.9479 | 7103328 |
3.1352 | 3.9604 | 8400 | 2.9728 | 7276304 |
2.9739 | 4.0547 | 8600 | 2.9485 | 7448112 |
2.5534 | 4.1490 | 8800 | 2.9555 | 7623632 |
2.5543 | 4.2433 | 9000 | 2.9271 | 7799248 |
2.5284 | 4.3376 | 9200 | 2.9455 | 7974368 |
2.8538 | 4.4319 | 9400 | 2.9379 | 8146384 |
2.7943 | 4.5262 | 9600 | 2.9336 | 8321456 |
2.4081 | 4.6205 | 9800 | 2.9336 | 8490096 |
2.7996 | 4.7148 | 10000 | 2.9381 | 8665904 |
2.3661 | 4.8091 | 10200 | 2.9455 | 8837712 |
2.966 | 4.9033 | 10400 | 2.9509 | 9010400 |
3.1711 | 4.9976 | 10600 | 2.9699 | 9185584 |
3.311 | 5.0919 | 10800 | 2.9491 | 9358160 |
2.4932 | 5.1862 | 11000 | 2.9626 | 9535520 |
3.3139 | 5.2805 | 11200 | 2.9806 | 9709232 |
2.7371 | 5.3748 | 11400 | 2.9771 | 9880896 |
2.9514 | 5.4691 | 11600 | 2.9830 | 10053056 |
3.3724 | 5.5634 | 11800 | 2.9859 | 10229152 |
3.1756 | 5.6577 | 12000 | 2.9848 | 10404384 |
2.9306 | 5.7520 | 12200 | 2.9874 | 10573872 |
2.9906 | 5.8463 | 12400 | 2.9814 | 10748304 |
3.0223 | 5.9406 | 12600 | 2.9898 | 10917920 |
3.4233 | 6.0349 | 12800 | 2.9858 | 11092736 |
2.554 | 6.1292 | 13000 | 2.9839 | 11269264 |
3.5816 | 6.2235 | 13200 | 2.9827 | 11441120 |
2.9904 | 6.3178 | 13400 | 2.9840 | 11614176 |
2.3922 | 6.4121 | 13600 | 2.9881 | 11785424 |
3.0193 | 6.5064 | 13800 | 2.9901 | 11960752 |
2.663 | 6.6007 | 14000 | 2.9775 | 12132672 |
3.3592 | 6.6950 | 14200 | 2.9821 | 12303424 |
3.1617 | 6.7893 | 14400 | 2.9830 | 12474592 |
3.1247 | 6.8835 | 14600 | 2.9735 | 12649424 |
2.4094 | 6.9778 | 14800 | 2.9854 | 12821280 |
2.8975 | 7.0721 | 15000 | 2.9798 | 12996208 |
3.3305 | 7.1664 | 15200 | 2.9779 | 13172592 |
2.8335 | 7.2607 | 15400 | 2.9754 | 13342864 |
3.2162 | 7.3550 | 15600 | 2.9741 | 13515600 |
3.1557 | 7.4493 | 15800 | 2.9858 | 13688640 |
3.123 | 7.5436 | 16000 | 2.9802 | 13863312 |
3.1461 | 7.6379 | 16200 | 2.9744 | 14032992 |
2.5753 | 7.7322 | 16400 | 2.9744 | 14205936 |
3.0835 | 7.8265 | 16600 | 2.9788 | 14378336 |
2.9754 | 7.9208 | 16800 | 2.9861 | 14551456 |
2.7244 | 8.0151 | 17000 | 2.9781 | 14730672 |
3.4109 | 8.1094 | 17200 | 2.9844 | 14904544 |
2.7873 | 8.2037 | 17400 | 2.9804 | 15078832 |
3.263 | 8.2980 | 17600 | 2.9827 | 15254544 |
2.6633 | 8.3923 | 17800 | 2.9717 | 15422256 |
2.6194 | 8.4866 | 18000 | 2.9880 | 15595776 |
2.8025 | 8.5809 | 18200 | 2.9845 | 15768288 |
3.2739 | 8.6752 | 18400 | 2.9862 | 15941776 |
3.0337 | 8.7694 | 18600 | 2.9897 | 16115152 |
3.0608 | 8.8637 | 18800 | 2.9865 | 16284384 |
3.5312 | 8.9580 | 19000 | 2.9885 | 16457552 |
2.6771 | 9.0523 | 19200 | 2.9896 | 16632272 |
2.8448 | 9.1466 | 19400 | 2.9859 | 16806304 |
3.4979 | 9.2409 | 19600 | 2.9860 | 16979072 |
3.4671 | 9.3352 | 19800 | 2.9841 | 17150160 |
3.6682 | 9.4295 | 20000 | 2.9850 | 17321280 |
2.8798 | 9.5238 | 20200 | 2.9839 | 17495488 |
3.5262 | 9.6181 | 20400 | 2.9818 | 17670576 |
3.3741 | 9.7124 | 20600 | 2.9857 | 17843440 |
2.8687 | 9.8067 | 20800 | 2.9815 | 18012496 |
2.7849 | 9.9010 | 21000 | 2.9824 | 18186480 |
2.7368 | 9.9953 | 21200 | 2.9828 | 18360368 |
2.6571 | 10.0896 | 21400 | 2.9818 | 18539664 |
2.6093 | 10.1839 | 21600 | 2.9837 | 18718016 |
2.8979 | 10.2782 | 21800 | 2.9838 | 18888560 |
2.3822 | 10.3725 | 22000 | 2.9835 | 19061328 |
2.8941 | 10.4668 | 22200 | 2.9847 | 19236176 |
2.2785 | 10.5611 | 22400 | 2.9793 | 19404288 |
2.7086 | 10.6554 | 22600 | 2.9829 | 19574224 |
3.0499 | 10.7496 | 22800 | 2.9829 | 19744496 |
2.5357 | 10.8439 | 23000 | 2.9834 | 19915984 |
2.8058 | 10.9382 | 23200 | 2.9827 | 20090944 |
3.2345 | 11.0325 | 23400 | 2.9843 | 20264992 |
2.6316 | 11.1268 | 23600 | 2.9810 | 20437952 |
3.344 | 11.2211 | 23800 | 2.9823 | 20611040 |
3.0959 | 11.3154 | 24000 | 2.9831 | 20787488 |
3.3262 | 11.4097 | 24200 | 2.9829 | 20958240 |
3.9468 | 11.5040 | 24400 | 2.9828 | 21133392 |
2.874 | 11.5983 | 24600 | 2.9810 | 21303360 |
2.9608 | 11.6926 | 24800 | 2.9846 | 21475184 |
2.9467 | 11.7869 | 25000 | 2.9840 | 21649744 |
2.8529 | 11.8812 | 25200 | 2.9841 | 21819728 |
3.0579 | 11.9755 | 25400 | 2.9836 | 21993120 |
2.9273 | 12.0698 | 25600 | 2.9827 | 22164624 |
3.3136 | 12.1641 | 25800 | 2.9837 | 22340064 |
2.507 | 12.2584 | 26000 | 2.9838 | 22515088 |
2.7376 | 12.3527 | 26200 | 2.9842 | 22692240 |
2.3293 | 12.4470 | 26400 | 2.9816 | 22864512 |
3.2821 | 12.5413 | 26600 | 2.9816 | 23037568 |
2.8383 | 12.6355 | 26800 | 2.9818 | 23207936 |
2.491 | 12.7298 | 27000 | 2.9850 | 23381376 |
2.7425 | 12.8241 | 27200 | 2.9821 | 23553008 |
3.0866 | 12.9184 | 27400 | 2.9818 | 23722608 |
3.0738 | 13.0127 | 27600 | 2.9836 | 23892928 |
2.6363 | 13.1070 | 27800 | 2.9819 | 24063632 |
3.15 | 13.2013 | 28000 | 2.9816 | 24237248 |
2.9501 | 13.2956 | 28200 | 2.9806 | 24411712 |
3.1561 | 13.3899 | 28400 | 2.9818 | 24584800 |
3.0268 | 13.4842 | 28600 | 2.9812 | 24759888 |
2.6915 | 13.5785 | 28800 | 2.9827 | 24936720 |
2.1768 | 13.6728 | 29000 | 2.9816 | 25110864 |
2.769 | 13.7671 | 29200 | 2.9800 | 25284944 |
3.4771 | 13.8614 | 29400 | 2.9812 | 25456816 |
3.0152 | 13.9557 | 29600 | 2.9807 | 25631728 |
2.8072 | 14.0500 | 29800 | 2.9815 | 25801056 |
3.4366 | 14.1443 | 30000 | 2.9832 | 25978896 |
3.0998 | 14.2386 | 30200 | 2.9835 | 26156672 |
2.6254 | 14.3329 | 30400 | 2.9815 | 26330592 |
3.1786 | 14.4272 | 30600 | 2.9817 | 26502800 |
2.803 | 14.5215 | 30800 | 2.9820 | 26671584 |
2.881 | 14.6157 | 31000 | 2.9818 | 26845568 |
3.4202 | 14.7100 | 31200 | 2.9797 | 27017952 |
2.9903 | 14.8043 | 31400 | 2.9816 | 27191600 |
2.9173 | 14.8986 | 31600 | 2.9821 | 27362144 |
2.5902 | 14.9929 | 31800 | 2.9826 | 27536992 |
3.4131 | 15.0872 | 32000 | 2.9853 | 27707728 |
3.1571 | 15.1815 | 32200 | 2.9846 | 27886368 |
4.0238 | 15.2758 | 32400 | 2.9850 | 28061984 |
2.7433 | 15.3701 | 32600 | 2.9855 | 28233360 |
2.9622 | 15.4644 | 32800 | 2.9850 | 28411200 |
2.9855 | 15.5587 | 33000 | 2.9855 | 28582944 |
2.8146 | 15.6530 | 33200 | 2.9850 | 28756240 |
2.1957 | 15.7473 | 33400 | 2.9850 | 28926208 |
3.0656 | 15.8416 | 33600 | 2.9850 | 29096816 |
2.781 | 15.9359 | 33800 | 2.9844 | 29267072 |
2.8638 | 16.0302 | 34000 | 2.9844 | 29435360 |
3.3154 | 16.1245 | 34200 | 2.9844 | 29610720 |
2.351 | 16.2188 | 34400 | 2.9844 | 29781472 |
2.8905 | 16.3131 | 34600 | 2.9844 | 29959568 |
2.4058 | 16.4074 | 34800 | 2.9844 | 30134704 |
3.0833 | 16.5017 | 35000 | 2.9844 | 30305200 |
3.0284 | 16.5959 | 35200 | 2.9844 | 30478576 |
2.7625 | 16.6902 | 35400 | 2.9844 | 30647744 |
2.5376 | 16.7845 | 35600 | 2.9844 | 30823072 |
3.3257 | 16.8788 | 35800 | 2.9844 | 30996032 |
2.8614 | 16.9731 | 36000 | 2.9844 | 31167328 |
2.8231 | 17.0674 | 36200 | 2.9844 | 31341392 |
2.4818 | 17.1617 | 36400 | 2.9844 | 31515648 |
3.5857 | 17.2560 | 36600 | 2.9844 | 31690208 |
2.8301 | 17.3503 | 36800 | 2.9844 | 31868288 |
2.6124 | 17.4446 | 37000 | 2.9844 | 32041536 |
3.5769 | 17.5389 | 37200 | 2.9844 | 32213584 |
3.0379 | 17.6332 | 37400 | 2.9844 | 32385920 |
2.76 | 17.7275 | 37600 | 2.9844 | 32555856 |
3.1422 | 17.8218 | 37800 | 2.9844 | 32729024 |
2.7946 | 17.9161 | 38000 | 2.9844 | 32902832 |
3.2047 | 18.0104 | 38200 | 2.9844 | 33076912 |
2.4714 | 18.1047 | 38400 | 2.9844 | 33248832 |
2.6947 | 18.1990 | 38600 | 2.9844 | 33420800 |
3.2644 | 18.2933 | 38800 | 2.9844 | 33594000 |
2.9905 | 18.3876 | 39000 | 2.9844 | 33765936 |
2.7909 | 18.4818 | 39200 | 2.9844 | 33936896 |
2.7959 | 18.5761 | 39400 | 2.9844 | 34110592 |
2.8925 | 18.6704 | 39600 | 2.9844 | 34284208 |
3.0191 | 18.7647 | 39800 | 2.9844 | 34458576 |
3.5334 | 18.8590 | 40000 | 2.9844 | 34633072 |
Framework versions
- PEFT 0.15.2.dev0
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support