train_rte_1752826680

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the rte dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1858
  • Num Input Tokens Seen: 3481336

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 123
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
9.0694 0.5009 281 8.8326 176032
4.1872 1.0018 562 4.3011 349200
2.6065 1.5027 843 2.3399 524208
1.1642 2.0036 1124 1.2671 699264
0.5388 2.5045 1405 0.6599 873600
0.4425 3.0053 1686 0.3937 1048184
0.3118 3.5062 1967 0.2907 1223864
0.2657 4.0071 2248 0.2455 1397624
0.2172 4.5080 2529 0.2220 1570936
0.1999 5.0089 2810 0.2097 1746384
0.1941 5.5098 3091 0.2019 1922384
0.1879 6.0107 3372 0.1951 2092320
0.206 6.5116 3653 0.1921 2267520
0.1597 7.0125 3934 0.1901 2441688
0.1879 7.5134 4215 0.1883 2614936
0.1623 8.0143 4496 0.1862 2790832
0.1826 8.5152 4777 0.1858 2963888
0.1875 9.0160 5058 0.1860 3137352
0.1772 9.5169 5339 0.1858 3312648

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_rte_1752826680

Adapter
(1395)
this model