train_sst2_1744902620
This model is a fine-tuned version of google/gemma-3-1b-it on the sst2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0718
- Num Input Tokens Seen: 36181120
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 123
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- training_steps: 40000
Training results
Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
---|---|---|---|---|
0.398 | 0.0528 | 200 | 0.4623 | 180224 |
0.1778 | 0.1056 | 400 | 0.2253 | 361024 |
0.1088 | 0.1584 | 600 | 0.1790 | 541408 |
0.1134 | 0.2112 | 800 | 0.1481 | 722496 |
0.0998 | 0.2640 | 1000 | 0.1331 | 903200 |
0.1077 | 0.3167 | 1200 | 0.1238 | 1084928 |
0.0783 | 0.3695 | 1400 | 0.1178 | 1265312 |
0.1088 | 0.4223 | 1600 | 0.1150 | 1447200 |
0.0996 | 0.4751 | 1800 | 0.1113 | 1628352 |
0.1476 | 0.5279 | 2000 | 0.1095 | 1809312 |
0.1041 | 0.5807 | 2200 | 0.1076 | 1992416 |
0.1256 | 0.6335 | 2400 | 0.1058 | 2171744 |
0.0955 | 0.6863 | 2600 | 0.1049 | 2352352 |
0.1307 | 0.7391 | 2800 | 0.1035 | 2532128 |
0.1216 | 0.7919 | 3000 | 0.1017 | 2713888 |
0.0982 | 0.8447 | 3200 | 0.1005 | 2894304 |
0.0764 | 0.8975 | 3400 | 0.0993 | 3076640 |
0.1191 | 0.9502 | 3600 | 0.1002 | 3257632 |
0.1083 | 1.0029 | 3800 | 0.0972 | 3436976 |
0.1176 | 1.0557 | 4000 | 0.0966 | 3618672 |
0.1174 | 1.1085 | 4200 | 0.0968 | 3800592 |
0.0734 | 1.1613 | 4400 | 0.0950 | 3980592 |
0.0563 | 1.2141 | 4600 | 0.0944 | 4161936 |
0.1105 | 1.2669 | 4800 | 0.0948 | 4343440 |
0.0871 | 1.3197 | 5000 | 0.0930 | 4526576 |
0.1109 | 1.3724 | 5200 | 0.0923 | 4707952 |
0.1011 | 1.4252 | 5400 | 0.0919 | 4887824 |
0.0842 | 1.4780 | 5600 | 0.0911 | 5068368 |
0.0909 | 1.5308 | 5800 | 0.0906 | 5250800 |
0.0688 | 1.5836 | 6000 | 0.0899 | 5431440 |
0.1125 | 1.6364 | 6200 | 0.0893 | 5611184 |
0.0643 | 1.6892 | 6400 | 0.0887 | 5792144 |
0.0953 | 1.7420 | 6600 | 0.0889 | 5974000 |
0.083 | 1.7948 | 6800 | 0.0876 | 6154320 |
0.1181 | 1.8476 | 7000 | 0.0872 | 6334608 |
0.0723 | 1.9004 | 7200 | 0.0869 | 6515152 |
0.0687 | 1.9531 | 7400 | 0.0869 | 6695472 |
0.0822 | 2.0058 | 7600 | 0.0858 | 6875184 |
0.127 | 2.0586 | 7800 | 0.0865 | 7057584 |
0.1107 | 2.1114 | 8000 | 0.0852 | 7236880 |
0.1062 | 2.1642 | 8200 | 0.0849 | 7418160 |
0.1075 | 2.2170 | 8400 | 0.0851 | 7598544 |
0.0569 | 2.2698 | 8600 | 0.0847 | 7777744 |
0.0814 | 2.3226 | 8800 | 0.0842 | 7957552 |
0.0829 | 2.3753 | 9000 | 0.0843 | 8138448 |
0.068 | 2.4281 | 9200 | 0.0832 | 8321584 |
0.0855 | 2.4809 | 9400 | 0.0831 | 8502288 |
0.0749 | 2.5337 | 9600 | 0.0830 | 8684240 |
0.1155 | 2.5865 | 9800 | 0.0826 | 8866128 |
0.1102 | 2.6393 | 10000 | 0.0822 | 9045584 |
0.0735 | 2.6921 | 10200 | 0.0819 | 9225744 |
0.1244 | 2.7449 | 10400 | 0.0817 | 9409616 |
0.079 | 2.7977 | 10600 | 0.0819 | 9590384 |
0.0851 | 2.8505 | 10800 | 0.0814 | 9772624 |
0.0835 | 2.9033 | 11000 | 0.0810 | 9953712 |
0.0527 | 2.9561 | 11200 | 0.0808 | 10132784 |
0.0793 | 3.0087 | 11400 | 0.0805 | 10312800 |
0.0775 | 3.0615 | 11600 | 0.0803 | 10492768 |
0.0596 | 3.1143 | 11800 | 0.0801 | 10673088 |
0.0897 | 3.1671 | 12000 | 0.0798 | 10854592 |
0.0458 | 3.2199 | 12200 | 0.0798 | 11035424 |
0.0498 | 3.2727 | 12400 | 0.0794 | 11217728 |
0.0989 | 3.3255 | 12600 | 0.0793 | 11400032 |
0.0491 | 3.3782 | 12800 | 0.0793 | 11580736 |
0.0357 | 3.4310 | 13000 | 0.0792 | 11761344 |
0.0562 | 3.4838 | 13200 | 0.0789 | 11940800 |
0.1195 | 3.5366 | 13400 | 0.0791 | 12121216 |
0.0581 | 3.5894 | 13600 | 0.0785 | 12302080 |
0.0751 | 3.6422 | 13800 | 0.0783 | 12482400 |
0.0955 | 3.6950 | 14000 | 0.0783 | 12664768 |
0.0876 | 3.7478 | 14200 | 0.0784 | 12845696 |
0.0891 | 3.8006 | 14400 | 0.0778 | 13026720 |
0.087 | 3.8534 | 14600 | 0.0785 | 13207904 |
0.0783 | 3.9062 | 14800 | 0.0774 | 13389408 |
0.0426 | 3.9590 | 15000 | 0.0772 | 13569120 |
0.0844 | 4.0116 | 15200 | 0.0770 | 13749232 |
0.0889 | 4.0644 | 15400 | 0.0769 | 13929232 |
0.0757 | 4.1172 | 15600 | 0.0767 | 14111056 |
0.0416 | 4.1700 | 15800 | 0.0769 | 14290896 |
0.0518 | 4.2228 | 16000 | 0.0765 | 14470384 |
0.0584 | 4.2756 | 16200 | 0.0763 | 14650736 |
0.0442 | 4.3284 | 16400 | 0.0765 | 14834416 |
0.088 | 4.3812 | 16600 | 0.0763 | 15014800 |
0.0651 | 4.4339 | 16800 | 0.0761 | 15194064 |
0.0553 | 4.4867 | 17000 | 0.0764 | 15376368 |
0.0516 | 4.5395 | 17200 | 0.0762 | 15556464 |
0.0914 | 4.5923 | 17400 | 0.0762 | 15738448 |
0.0678 | 4.6451 | 17600 | 0.0760 | 15919856 |
0.0664 | 4.6979 | 17800 | 0.0755 | 16100016 |
0.0868 | 4.7507 | 18000 | 0.0758 | 16282288 |
0.081 | 4.8035 | 18200 | 0.0758 | 16461520 |
0.0677 | 4.8563 | 18400 | 0.0754 | 16642640 |
0.0586 | 4.9091 | 18600 | 0.0753 | 16825040 |
0.0543 | 4.9619 | 18800 | 0.0754 | 17006160 |
0.0392 | 5.0145 | 19000 | 0.0756 | 17188336 |
0.0363 | 5.0673 | 19200 | 0.0753 | 17369104 |
0.0991 | 5.1201 | 19400 | 0.0748 | 17549968 |
0.0843 | 5.1729 | 19600 | 0.0747 | 17730032 |
0.1282 | 5.2257 | 19800 | 0.0746 | 17910128 |
0.0582 | 5.2785 | 20000 | 0.0747 | 18091056 |
0.0359 | 5.3313 | 20200 | 0.0749 | 18271440 |
0.0874 | 5.3841 | 20400 | 0.0745 | 18450832 |
0.071 | 5.4368 | 20600 | 0.0744 | 18632304 |
0.0333 | 5.4896 | 20800 | 0.0746 | 18813264 |
0.0943 | 5.5424 | 21000 | 0.0748 | 18994928 |
0.0615 | 5.5952 | 21200 | 0.0744 | 19174960 |
0.0329 | 5.6480 | 21400 | 0.0746 | 19356976 |
0.0354 | 5.7008 | 21600 | 0.0744 | 19538672 |
0.0861 | 5.7536 | 21800 | 0.0740 | 19719600 |
0.0379 | 5.8064 | 22000 | 0.0738 | 19900592 |
0.0962 | 5.8592 | 22200 | 0.0739 | 20080976 |
0.0491 | 5.9120 | 22400 | 0.0739 | 20262096 |
0.065 | 5.9648 | 22600 | 0.0736 | 20442992 |
0.0684 | 6.0174 | 22800 | 0.0738 | 20624000 |
0.0745 | 6.0702 | 23000 | 0.0736 | 20805728 |
0.0616 | 6.1230 | 23200 | 0.0733 | 20986976 |
0.0507 | 6.1758 | 23400 | 0.0740 | 21167808 |
0.0366 | 6.2286 | 23600 | 0.0733 | 21349184 |
0.0663 | 6.2814 | 23800 | 0.0734 | 21529376 |
0.0921 | 6.3342 | 24000 | 0.0731 | 21710304 |
0.0746 | 6.3870 | 24200 | 0.0732 | 21889920 |
0.0733 | 6.4398 | 24400 | 0.0741 | 22070176 |
0.0482 | 6.4925 | 24600 | 0.0733 | 22249984 |
0.0442 | 6.5453 | 24800 | 0.0731 | 22432352 |
0.0773 | 6.5981 | 25000 | 0.0729 | 22612672 |
0.0601 | 6.6509 | 25200 | 0.0731 | 22793920 |
0.0778 | 6.7037 | 25400 | 0.0731 | 22974976 |
0.0849 | 6.7565 | 25600 | 0.0731 | 23155872 |
0.0537 | 6.8093 | 25800 | 0.0729 | 23338048 |
0.0567 | 6.8621 | 26000 | 0.0728 | 23518912 |
0.0443 | 6.9149 | 26200 | 0.0728 | 23700448 |
0.0494 | 6.9677 | 26400 | 0.0729 | 23880704 |
0.0869 | 7.0203 | 26600 | 0.0733 | 24061744 |
0.0692 | 7.0731 | 26800 | 0.0731 | 24240720 |
0.0564 | 7.1259 | 27000 | 0.0730 | 24423344 |
0.0797 | 7.1787 | 27200 | 0.0729 | 24603344 |
0.0536 | 7.2315 | 27400 | 0.0730 | 24784688 |
0.055 | 7.2843 | 27600 | 0.0729 | 24965104 |
0.0625 | 7.3371 | 27800 | 0.0725 | 25146416 |
0.0422 | 7.3899 | 28000 | 0.0727 | 25327344 |
0.078 | 7.4427 | 28200 | 0.0724 | 25507504 |
0.067 | 7.4954 | 28400 | 0.0728 | 25688464 |
0.0696 | 7.5482 | 28600 | 0.0726 | 25870064 |
0.07 | 7.6010 | 28800 | 0.0726 | 26051856 |
0.0469 | 7.6538 | 29000 | 0.0728 | 26232080 |
0.0746 | 7.7066 | 29200 | 0.0724 | 26415344 |
0.0468 | 7.7594 | 29400 | 0.0725 | 26597616 |
0.0753 | 7.8122 | 29600 | 0.0724 | 26779344 |
0.082 | 7.8650 | 29800 | 0.0723 | 26960208 |
0.0634 | 7.9178 | 30000 | 0.0724 | 27142320 |
0.05 | 7.9706 | 30200 | 0.0725 | 27322864 |
0.0582 | 8.0232 | 30400 | 0.0723 | 27502208 |
0.0731 | 8.0760 | 30600 | 0.0723 | 27683072 |
0.046 | 8.1288 | 30800 | 0.0721 | 27864736 |
0.0821 | 8.1816 | 31000 | 0.0723 | 28044640 |
0.0794 | 8.2344 | 31200 | 0.0723 | 28226016 |
0.1084 | 8.2872 | 31400 | 0.0723 | 28406464 |
0.0643 | 8.3400 | 31600 | 0.0722 | 28587264 |
0.047 | 8.3928 | 31800 | 0.0721 | 28767840 |
0.0921 | 8.4456 | 32000 | 0.0723 | 28948576 |
0.0707 | 8.4984 | 32200 | 0.0721 | 29130656 |
0.0555 | 8.5511 | 32400 | 0.0721 | 29312288 |
0.0684 | 8.6039 | 32600 | 0.0723 | 29492416 |
0.0723 | 8.6567 | 32800 | 0.0722 | 29672864 |
0.0948 | 8.7095 | 33000 | 0.0722 | 29854336 |
0.049 | 8.7623 | 33200 | 0.0720 | 30036448 |
0.0313 | 8.8151 | 33400 | 0.0720 | 30216896 |
0.058 | 8.8679 | 33600 | 0.0725 | 30396960 |
0.055 | 8.9207 | 33800 | 0.0721 | 30576960 |
0.0824 | 8.9735 | 34000 | 0.0723 | 30759200 |
0.0563 | 9.0261 | 34200 | 0.0721 | 30938880 |
0.0765 | 9.0789 | 34400 | 0.0720 | 31120480 |
0.1035 | 9.1317 | 34600 | 0.0720 | 31301056 |
0.068 | 9.1845 | 34800 | 0.0722 | 31481824 |
0.0835 | 9.2373 | 35000 | 0.0721 | 31661536 |
0.0396 | 9.2901 | 35200 | 0.0721 | 31842016 |
0.0384 | 9.3429 | 35400 | 0.0720 | 32021408 |
0.0771 | 9.3957 | 35600 | 0.0722 | 32202368 |
0.0646 | 9.4485 | 35800 | 0.0720 | 32381184 |
0.0557 | 9.5013 | 36000 | 0.0721 | 32562688 |
0.0974 | 9.5540 | 36200 | 0.0721 | 32743456 |
0.1236 | 9.6068 | 36400 | 0.0722 | 32926592 |
0.0495 | 9.6596 | 36600 | 0.0721 | 33105696 |
0.0544 | 9.7124 | 36800 | 0.0720 | 33286560 |
0.0385 | 9.7652 | 37000 | 0.0722 | 33468000 |
0.0917 | 9.8180 | 37200 | 0.0719 | 33650176 |
0.0393 | 9.8708 | 37400 | 0.0720 | 33831008 |
0.0766 | 9.9236 | 37600 | 0.0721 | 34012992 |
0.0637 | 9.9764 | 37800 | 0.0718 | 34195168 |
0.0941 | 10.0290 | 38000 | 0.0721 | 34373792 |
0.0685 | 10.0818 | 38200 | 0.0718 | 34553856 |
0.0769 | 10.1346 | 38400 | 0.0719 | 34734976 |
0.0412 | 10.1874 | 38600 | 0.0721 | 34915936 |
0.0642 | 10.2402 | 38800 | 0.0720 | 35096960 |
0.0539 | 10.2930 | 39000 | 0.0721 | 35276448 |
0.0743 | 10.3458 | 39200 | 0.0719 | 35457088 |
0.0707 | 10.3986 | 39400 | 0.0720 | 35637600 |
0.0465 | 10.4514 | 39600 | 0.0721 | 35817824 |
0.063 | 10.5042 | 39800 | 0.0722 | 35999840 |
0.072 | 10.5569 | 40000 | 0.0721 | 36181120 |
Framework versions
- PEFT 0.15.1
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 26
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support