train_stsb_1745333595
This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.3 on the stsb dataset. It achieves the following results on the evaluation set:
- Loss: 0.2668
- Num Input Tokens Seen: 61177152
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.3
- train_batch_size: 4
- eval_batch_size: 4
- seed: 123
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- training_steps: 40000
Training results
Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
---|---|---|---|---|
0.3915 | 0.6182 | 200 | 0.4912 | 304960 |
0.2668 | 1.2349 | 400 | 0.3558 | 610112 |
0.3027 | 1.8532 | 600 | 0.3570 | 918240 |
0.2573 | 2.4699 | 800 | 0.3305 | 1223440 |
0.2581 | 3.0866 | 1000 | 0.3148 | 1529568 |
0.4142 | 3.7048 | 1200 | 0.3205 | 1838464 |
0.2769 | 4.3215 | 1400 | 0.3080 | 2144560 |
0.2291 | 4.9397 | 1600 | 0.2977 | 2450736 |
0.2145 | 5.5564 | 1800 | 0.3139 | 2755856 |
0.2554 | 6.1731 | 2000 | 0.2992 | 3063440 |
0.2521 | 6.7913 | 2200 | 0.2902 | 3368976 |
0.3044 | 7.4080 | 2400 | 0.2987 | 3677040 |
0.2534 | 8.0247 | 2600 | 0.3155 | 3983872 |
0.2416 | 8.6430 | 2800 | 0.2891 | 4292480 |
0.2533 | 9.2597 | 3000 | 0.2984 | 4594560 |
0.221 | 9.8779 | 3200 | 0.2846 | 4900544 |
0.2279 | 10.4946 | 3400 | 0.2847 | 5206928 |
0.2165 | 11.1113 | 3600 | 0.2820 | 5511472 |
0.2089 | 11.7295 | 3800 | 0.2890 | 5815280 |
0.2102 | 12.3462 | 4000 | 0.2872 | 6122240 |
0.2472 | 12.9645 | 4200 | 0.2774 | 6427616 |
0.2119 | 13.5811 | 4400 | 0.2743 | 6733776 |
0.2093 | 14.1978 | 4600 | 0.2818 | 7038848 |
0.2802 | 14.8161 | 4800 | 0.2703 | 7344384 |
0.1749 | 15.4328 | 5000 | 0.2951 | 7651280 |
0.1811 | 16.0495 | 5200 | 0.2856 | 7955504 |
0.1694 | 16.6677 | 5400 | 0.2910 | 8262864 |
0.1876 | 17.2844 | 5600 | 0.2822 | 8568256 |
0.195 | 17.9026 | 5800 | 0.2668 | 8873856 |
0.1784 | 18.5193 | 6000 | 0.2850 | 9180288 |
0.1717 | 19.1360 | 6200 | 0.2957 | 9486288 |
0.2038 | 19.7543 | 6400 | 0.2840 | 9792720 |
0.1578 | 20.3709 | 6600 | 0.3026 | 10100576 |
0.1607 | 20.9892 | 6800 | 0.3016 | 10406848 |
0.161 | 21.6059 | 7000 | 0.3050 | 10713296 |
0.1826 | 22.2226 | 7200 | 0.3285 | 11016800 |
0.1649 | 22.8408 | 7400 | 0.3289 | 11325536 |
0.1486 | 23.4575 | 7600 | 0.3313 | 11631392 |
0.1468 | 24.0742 | 7800 | 0.3300 | 11936144 |
0.165 | 24.6924 | 8000 | 0.3389 | 12244560 |
0.135 | 25.3091 | 8200 | 0.3384 | 12549728 |
0.1594 | 25.9274 | 8400 | 0.3279 | 12858400 |
0.1427 | 26.5440 | 8600 | 0.3523 | 13163216 |
0.1324 | 27.1607 | 8800 | 0.3634 | 13469440 |
0.1621 | 27.7790 | 9000 | 0.3703 | 13774400 |
0.1272 | 28.3957 | 9200 | 0.3663 | 14082512 |
0.1359 | 29.0124 | 9400 | 0.3360 | 14385408 |
0.1242 | 29.6306 | 9600 | 0.3765 | 14692096 |
0.1259 | 30.2473 | 9800 | 0.3994 | 14996480 |
0.1339 | 30.8655 | 10000 | 0.4001 | 15302624 |
0.1115 | 31.4822 | 10200 | 0.4308 | 15609936 |
0.0909 | 32.0989 | 10400 | 0.4408 | 15915040 |
0.1211 | 32.7172 | 10600 | 0.4281 | 16222112 |
0.0754 | 33.3338 | 10800 | 0.4210 | 16525360 |
0.1127 | 33.9521 | 11000 | 0.4296 | 16833040 |
0.0717 | 34.5688 | 11200 | 0.5212 | 17138928 |
0.0851 | 35.1855 | 11400 | 0.4581 | 17446224 |
0.0824 | 35.8037 | 11600 | 0.4812 | 17754192 |
0.0805 | 36.4204 | 11800 | 0.5338 | 18056816 |
0.0802 | 37.0371 | 12000 | 0.5045 | 18365904 |
0.0824 | 37.6553 | 12200 | 0.5051 | 18669424 |
0.0572 | 38.2720 | 12400 | 0.5928 | 18975680 |
0.0689 | 38.8903 | 12600 | 0.5256 | 19284128 |
0.0877 | 39.5070 | 12800 | 0.5032 | 19589440 |
0.069 | 40.1236 | 13000 | 0.5432 | 19892304 |
0.054 | 40.7419 | 13200 | 0.5622 | 20201904 |
0.0571 | 41.3586 | 13400 | 0.5713 | 20507296 |
0.0491 | 41.9768 | 13600 | 0.5488 | 20814240 |
0.0494 | 42.5935 | 13800 | 0.5668 | 21117472 |
0.0611 | 43.2102 | 14000 | 0.5911 | 21424352 |
0.0625 | 43.8284 | 14200 | 0.5955 | 21729344 |
0.0496 | 44.4451 | 14400 | 0.6157 | 22035168 |
0.0371 | 45.0618 | 14600 | 0.6133 | 22341904 |
0.0471 | 45.6801 | 14800 | 0.6059 | 22646640 |
0.026 | 46.2968 | 15000 | 0.6613 | 22952944 |
0.0351 | 46.9150 | 15200 | 0.6269 | 23260240 |
0.0379 | 47.5317 | 15400 | 0.6851 | 23566048 |
0.0321 | 48.1484 | 15600 | 0.6763 | 23871504 |
0.0373 | 48.7666 | 15800 | 0.6797 | 24175696 |
0.0284 | 49.3833 | 16000 | 0.7029 | 24480832 |
0.0392 | 50.0 | 16200 | 0.6647 | 24786896 |
0.0222 | 50.6182 | 16400 | 0.7084 | 25092208 |
0.0276 | 51.2349 | 16600 | 0.6964 | 25398288 |
0.0237 | 51.8532 | 16800 | 0.7134 | 25707024 |
0.0207 | 52.4699 | 17000 | 0.7202 | 26010848 |
0.0133 | 53.0866 | 17200 | 0.7254 | 26319616 |
0.0251 | 53.7048 | 17400 | 0.7938 | 26623232 |
0.0288 | 54.3215 | 17600 | 0.7129 | 26932512 |
0.0173 | 54.9397 | 17800 | 0.7487 | 27238304 |
0.0165 | 55.5564 | 18000 | 0.7846 | 27542688 |
0.0194 | 56.1731 | 18200 | 0.7524 | 27848608 |
0.0144 | 56.7913 | 18400 | 0.7748 | 28156128 |
0.014 | 57.4080 | 18600 | 0.7994 | 28463824 |
0.0309 | 58.0247 | 18800 | 0.7437 | 28768304 |
0.0076 | 58.6430 | 19000 | 0.8176 | 29076400 |
0.0105 | 59.2597 | 19200 | 0.7934 | 29381968 |
0.0147 | 59.8779 | 19400 | 0.7984 | 29688144 |
0.0109 | 60.4946 | 19600 | 0.8231 | 29993744 |
0.0102 | 61.1113 | 19800 | 0.8141 | 30299024 |
0.0185 | 61.7295 | 20000 | 0.8043 | 30604816 |
0.0121 | 62.3462 | 20200 | 0.7951 | 30909520 |
0.02 | 62.9645 | 20400 | 0.8212 | 31217744 |
0.0073 | 63.5811 | 20600 | 0.8317 | 31523296 |
0.01 | 64.1978 | 20800 | 0.8920 | 31827424 |
0.0121 | 64.8161 | 21000 | 0.8372 | 32135904 |
0.0106 | 65.4328 | 21200 | 0.8723 | 32439120 |
0.0061 | 66.0495 | 21400 | 0.8708 | 32747712 |
0.0116 | 66.6677 | 21600 | 0.8543 | 33052672 |
0.0114 | 67.2844 | 21800 | 0.8384 | 33358560 |
0.0061 | 67.9026 | 22000 | 0.8718 | 33664736 |
0.0062 | 68.5193 | 22200 | 0.8799 | 33967392 |
0.0069 | 69.1360 | 22400 | 0.8613 | 34272592 |
0.003 | 69.7543 | 22600 | 0.9006 | 34578896 |
0.0019 | 70.3709 | 22800 | 0.9288 | 34883440 |
0.0014 | 70.9892 | 23000 | 0.9470 | 35188496 |
0.0039 | 71.6059 | 23200 | 0.9528 | 35492880 |
0.0026 | 72.2226 | 23400 | 0.9618 | 35798304 |
0.0027 | 72.8408 | 23600 | 0.9678 | 36105856 |
0.0085 | 73.4575 | 23800 | 0.8849 | 36408816 |
0.0064 | 74.0742 | 24000 | 0.8983 | 36716560 |
0.0068 | 74.6924 | 24200 | 0.8801 | 37025168 |
0.0039 | 75.3091 | 24400 | 0.9125 | 37330368 |
0.0085 | 75.9274 | 24600 | 0.8928 | 37636736 |
0.0017 | 76.5440 | 24800 | 0.9118 | 37941312 |
0.0008 | 77.1607 | 25000 | 0.9296 | 38246144 |
0.0035 | 77.7790 | 25200 | 0.9426 | 38552576 |
0.0006 | 78.3957 | 25400 | 0.9587 | 38857104 |
0.0008 | 79.0124 | 25600 | 0.9646 | 39165040 |
0.0009 | 79.6306 | 25800 | 0.9722 | 39472304 |
0.0005 | 80.2473 | 26000 | 0.9845 | 39777616 |
0.0025 | 80.8655 | 26200 | 0.9913 | 40084368 |
0.0075 | 81.4822 | 26400 | 0.9292 | 40388032 |
0.0044 | 82.0989 | 26600 | 0.8865 | 40694320 |
0.0128 | 82.7172 | 26800 | 0.9107 | 41001712 |
0.0022 | 83.3338 | 27000 | 0.9214 | 41305200 |
0.0012 | 83.9521 | 27200 | 0.9427 | 41615216 |
0.0008 | 84.5688 | 27400 | 0.9602 | 41920400 |
0.0003 | 85.1855 | 27600 | 0.9745 | 42224944 |
0.0004 | 85.8037 | 27800 | 0.9833 | 42528304 |
0.0003 | 86.4204 | 28000 | 0.9964 | 42836528 |
0.0002 | 87.0371 | 28200 | 0.9940 | 43141440 |
0.0002 | 87.6553 | 28400 | 1.0034 | 43445216 |
0.0004 | 88.2720 | 28600 | 1.0097 | 43750304 |
0.0002 | 88.8903 | 28800 | 1.0162 | 44055584 |
0.0032 | 89.5070 | 29000 | 1.0219 | 44361616 |
0.0006 | 90.1236 | 29200 | 1.0235 | 44665936 |
0.0048 | 90.7419 | 29400 | 1.0258 | 44972144 |
0.0001 | 91.3586 | 29600 | 1.0315 | 45276416 |
0.0003 | 91.9768 | 29800 | 1.0406 | 45583712 |
0.0002 | 92.5935 | 30000 | 1.0404 | 45888688 |
0.0001 | 93.2102 | 30200 | 1.0478 | 46195456 |
0.0002 | 93.8284 | 30400 | 1.0460 | 46500288 |
0.0001 | 94.4451 | 30600 | 1.0491 | 46804992 |
0.0001 | 95.0618 | 30800 | 1.0544 | 47112576 |
0.0001 | 95.6801 | 31000 | 1.0624 | 47418816 |
0.0002 | 96.2968 | 31200 | 1.0587 | 47723232 |
0.0016 | 96.9150 | 31400 | 1.0241 | 48029888 |
0.0096 | 97.5317 | 31600 | 1.0041 | 48335504 |
0.0004 | 98.1484 | 31800 | 0.9700 | 48640352 |
0.0007 | 98.7666 | 32000 | 0.9848 | 48945632 |
0.0013 | 99.3833 | 32200 | 0.9948 | 49253952 |
0.0003 | 100.0 | 32400 | 0.9980 | 49557760 |
0.0001 | 100.6182 | 32600 | 1.0072 | 49863392 |
0.0007 | 101.2349 | 32800 | 1.0100 | 50171184 |
0.0002 | 101.8532 | 33000 | 1.0170 | 50477424 |
0.0008 | 102.4699 | 33200 | 1.0209 | 50781472 |
0.0001 | 103.0866 | 33400 | 1.0264 | 51085008 |
0.0001 | 103.7048 | 33600 | 1.0309 | 51393296 |
0.0011 | 104.3215 | 33800 | 1.0308 | 51697808 |
0.0001 | 104.9397 | 34000 | 1.0317 | 52004880 |
0.0001 | 105.5564 | 34200 | 1.0370 | 52308944 |
0.0006 | 106.1731 | 34400 | 1.0422 | 52616512 |
0.0002 | 106.7913 | 34600 | 1.0431 | 52921600 |
0.0001 | 107.4080 | 34800 | 1.0459 | 53227040 |
0.0001 | 108.0247 | 35000 | 1.0487 | 53533488 |
0.0001 | 108.6430 | 35200 | 1.0537 | 53838704 |
0.0001 | 109.2597 | 35400 | 1.0533 | 54143984 |
0.0001 | 109.8779 | 35600 | 1.0562 | 54449808 |
0.0001 | 110.4946 | 35800 | 1.0580 | 54754304 |
0.0001 | 111.1113 | 36000 | 1.0632 | 55060864 |
0.0001 | 111.7295 | 36200 | 1.0636 | 55367296 |
0.0001 | 112.3462 | 36400 | 1.0645 | 55670672 |
0.0001 | 112.9645 | 36600 | 1.0676 | 55978256 |
0.0001 | 113.5811 | 36800 | 1.0657 | 56283024 |
0.0006 | 114.1978 | 37000 | 1.0700 | 56590928 |
0.0001 | 114.8161 | 37200 | 1.0715 | 56897936 |
0.0007 | 115.4328 | 37400 | 1.0732 | 57200192 |
0.0002 | 116.0495 | 37600 | 1.0714 | 57505872 |
0.0001 | 116.6677 | 37800 | 1.0744 | 57811120 |
0.0001 | 117.2844 | 38000 | 1.0752 | 58116320 |
0.0001 | 117.9026 | 38200 | 1.0750 | 58425376 |
0.0001 | 118.5193 | 38400 | 1.0758 | 58732208 |
0.0001 | 119.1360 | 38600 | 1.0753 | 59038688 |
0.0001 | 119.7543 | 38800 | 1.0777 | 59342656 |
0.0 | 120.3709 | 39000 | 1.0752 | 59647664 |
0.0001 | 120.9892 | 39200 | 1.0771 | 59954128 |
0.0002 | 121.6059 | 39400 | 1.0752 | 60260256 |
0.0001 | 122.2226 | 39600 | 1.0748 | 60563120 |
0.0001 | 122.8408 | 39800 | 1.0767 | 60870320 |
0.0001 | 123.4575 | 40000 | 1.0755 | 61177152 |
Framework versions
- PEFT 0.15.1
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for rbelanec/train_stsb_1745333595
Base model
mistralai/Mistral-7B-v0.3
Finetuned
mistralai/Mistral-7B-Instruct-v0.3