train_wsc_1745950297
This model is a fine-tuned version of google/gemma-3-1b-it on the wsc dataset. It achieves the following results on the evaluation set:
- Loss: 0.2320
- Num Input Tokens Seen: 14005200
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.3
- train_batch_size: 2
- eval_batch_size: 2
- seed: 123
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- training_steps: 40000
Training results
Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
---|---|---|---|---|
0.2548 | 1.6024 | 200 | 0.2622 | 70208 |
0.1992 | 3.2008 | 400 | 0.2413 | 140304 |
0.2498 | 4.8032 | 600 | 0.2570 | 210336 |
0.2522 | 6.4016 | 800 | 0.2428 | 280224 |
0.242 | 8.0 | 1000 | 0.2450 | 350448 |
0.2148 | 9.6024 | 1200 | 0.2627 | 420560 |
0.2342 | 11.2008 | 1400 | 0.2641 | 490880 |
0.2285 | 12.8032 | 1600 | 0.2463 | 560560 |
0.2441 | 14.4016 | 1800 | 0.2386 | 630816 |
0.2387 | 16.0 | 2000 | 0.2423 | 699936 |
0.2525 | 17.6024 | 2200 | 0.2489 | 769520 |
0.2251 | 19.2008 | 2400 | 0.2602 | 839648 |
0.2367 | 20.8032 | 2600 | 0.2374 | 910080 |
0.2371 | 22.4016 | 2800 | 0.2431 | 979504 |
0.2501 | 24.0 | 3000 | 0.2376 | 1049392 |
0.2608 | 25.6024 | 3200 | 0.2493 | 1119904 |
0.2566 | 27.2008 | 3400 | 0.2552 | 1189264 |
0.2314 | 28.8032 | 3600 | 0.2493 | 1259520 |
0.2074 | 30.4016 | 3800 | 0.2631 | 1329408 |
0.2418 | 32.0 | 4000 | 0.2633 | 1399696 |
0.2142 | 33.6024 | 4200 | 0.2820 | 1470240 |
0.2211 | 35.2008 | 4400 | 0.2362 | 1539536 |
0.2219 | 36.8032 | 4600 | 0.2515 | 1610032 |
0.2316 | 38.4016 | 4800 | 0.2434 | 1680240 |
0.2427 | 40.0 | 5000 | 0.2359 | 1749472 |
0.2211 | 41.6024 | 5200 | 0.2671 | 1819376 |
0.2588 | 43.2008 | 5400 | 0.2452 | 1889616 |
0.2276 | 44.8032 | 5600 | 0.2335 | 1959536 |
0.246 | 46.4016 | 5800 | 0.2408 | 2028864 |
0.227 | 48.0 | 6000 | 0.2435 | 2099424 |
0.2293 | 49.6024 | 6200 | 0.2412 | 2169376 |
0.2257 | 51.2008 | 6400 | 0.2394 | 2239408 |
0.2199 | 52.8032 | 6600 | 0.2374 | 2309472 |
0.2207 | 54.4016 | 6800 | 0.2414 | 2380032 |
0.234 | 56.0 | 7000 | 0.2387 | 2449376 |
0.2918 | 57.6024 | 7200 | 0.2351 | 2519776 |
0.2358 | 59.2008 | 7400 | 0.2430 | 2589392 |
0.2341 | 60.8032 | 7600 | 0.2409 | 2659792 |
0.2348 | 62.4016 | 7800 | 0.2404 | 2729184 |
0.2608 | 64.0 | 8000 | 0.2335 | 2799504 |
0.2289 | 65.6024 | 8200 | 0.2483 | 2869520 |
0.2527 | 67.2008 | 8400 | 0.2399 | 2940080 |
0.3065 | 68.8032 | 8600 | 0.2523 | 3010256 |
0.2274 | 70.4016 | 8800 | 0.2462 | 3080304 |
0.2381 | 72.0 | 9000 | 0.2320 | 3150464 |
0.2271 | 73.6024 | 9200 | 0.2393 | 3220512 |
0.2327 | 75.2008 | 9400 | 0.2342 | 3290320 |
0.2315 | 76.8032 | 9600 | 0.2374 | 3360352 |
0.223 | 78.4016 | 9800 | 0.2446 | 3430416 |
0.2339 | 80.0 | 10000 | 0.2346 | 3500544 |
0.2199 | 81.6024 | 10200 | 0.2461 | 3570432 |
0.2375 | 83.2008 | 10400 | 0.2540 | 3640832 |
0.1781 | 84.8032 | 10600 | 0.2972 | 3710480 |
0.2383 | 86.4016 | 10800 | 0.2541 | 3780368 |
0.2429 | 88.0 | 11000 | 0.2356 | 3850720 |
0.2298 | 89.6024 | 11200 | 0.2348 | 3920848 |
0.2298 | 91.2008 | 11400 | 0.2368 | 3990784 |
0.2371 | 92.8032 | 11600 | 0.2392 | 4060432 |
0.2455 | 94.4016 | 11800 | 0.2384 | 4130528 |
0.2291 | 96.0 | 12000 | 0.2460 | 4200848 |
0.2145 | 97.6024 | 12200 | 0.2545 | 4270928 |
0.2282 | 99.2008 | 12400 | 0.2467 | 4339920 |
0.2311 | 100.8032 | 12600 | 0.2462 | 4410624 |
0.2175 | 102.4016 | 12800 | 0.2575 | 4479904 |
0.225 | 104.0 | 13000 | 0.2437 | 4549824 |
0.2326 | 105.6024 | 13200 | 0.2624 | 4620128 |
0.2235 | 107.2008 | 13400 | 0.2572 | 4690352 |
0.248 | 108.8032 | 13600 | 0.2629 | 4760256 |
0.2307 | 110.4016 | 13800 | 0.2773 | 4830144 |
0.2317 | 112.0 | 14000 | 0.2349 | 4900080 |
0.2396 | 113.6024 | 14200 | 0.2791 | 4969936 |
0.2267 | 115.2008 | 14400 | 0.2567 | 5040096 |
0.2455 | 116.8032 | 14600 | 0.2898 | 5110288 |
0.2222 | 118.4016 | 14800 | 0.2783 | 5180208 |
0.2434 | 120.0 | 15000 | 0.2841 | 5250464 |
0.1949 | 121.6024 | 15200 | 0.3547 | 5320528 |
0.2059 | 123.2008 | 15400 | 0.3064 | 5390624 |
0.2223 | 124.8032 | 15600 | 0.3322 | 5460832 |
0.1972 | 126.4016 | 15800 | 0.3677 | 5530720 |
0.214 | 128.0 | 16000 | 0.4133 | 5600992 |
0.1881 | 129.6024 | 16200 | 0.3950 | 5672032 |
0.2404 | 131.2008 | 16400 | 0.3935 | 5740976 |
0.2185 | 132.8032 | 16600 | 0.4416 | 5811248 |
0.2123 | 134.4016 | 16800 | 0.5287 | 5881152 |
0.2205 | 136.0 | 17000 | 0.3450 | 5951136 |
0.2298 | 137.6024 | 17200 | 0.4274 | 6021136 |
0.1956 | 139.2008 | 17400 | 0.5100 | 6091696 |
0.2071 | 140.8032 | 17600 | 0.4885 | 6161472 |
0.2021 | 142.4016 | 17800 | 0.6196 | 6231760 |
0.1719 | 144.0 | 18000 | 0.6543 | 6301232 |
0.1586 | 145.6024 | 18200 | 0.7149 | 6371776 |
0.1591 | 147.2008 | 18400 | 0.7763 | 6442048 |
0.1977 | 148.8032 | 18600 | 0.7419 | 6511680 |
0.1525 | 150.4016 | 18800 | 0.6660 | 6581136 |
0.192 | 152.0 | 19000 | 0.8968 | 6651296 |
0.1509 | 153.6024 | 19200 | 1.0655 | 6721584 |
0.191 | 155.2008 | 19400 | 0.9136 | 6791744 |
0.1685 | 156.8032 | 19600 | 1.1094 | 6862112 |
0.1654 | 158.4016 | 19800 | 1.1051 | 6931856 |
0.1502 | 160.0 | 20000 | 1.2626 | 7001952 |
0.1517 | 161.6024 | 20200 | 1.0309 | 7071568 |
0.1468 | 163.2008 | 20400 | 1.1840 | 7141584 |
0.1608 | 164.8032 | 20600 | 1.2493 | 7212096 |
0.1338 | 166.4016 | 20800 | 1.0765 | 7282736 |
0.1946 | 168.0 | 21000 | 0.7663 | 7352288 |
0.1721 | 169.6024 | 21200 | 1.1365 | 7422624 |
0.1571 | 171.2008 | 21400 | 1.2918 | 7492496 |
0.1354 | 172.8032 | 21600 | 1.2736 | 7562288 |
0.1481 | 174.4016 | 21800 | 1.3800 | 7632432 |
0.1661 | 176.0 | 22000 | 1.4160 | 7702096 |
0.1122 | 177.6024 | 22200 | 1.6368 | 7772000 |
0.1677 | 179.2008 | 22400 | 1.6723 | 7842112 |
0.1481 | 180.8032 | 22600 | 1.1449 | 7912496 |
0.1084 | 182.4016 | 22800 | 1.3124 | 7982768 |
0.1482 | 184.0 | 23000 | 1.3050 | 8052448 |
0.1419 | 185.6024 | 23200 | 1.5570 | 8122832 |
0.1128 | 187.2008 | 23400 | 1.6610 | 8193088 |
0.0884 | 188.8032 | 23600 | 1.6369 | 8263104 |
0.1533 | 190.4016 | 23800 | 1.4895 | 8333312 |
0.1617 | 192.0 | 24000 | 1.6179 | 8402848 |
0.1453 | 193.6024 | 24200 | 1.7625 | 8472688 |
0.1496 | 195.2008 | 24400 | 1.7510 | 8542528 |
0.1241 | 196.8032 | 24600 | 1.8135 | 8612928 |
0.155 | 198.4016 | 24800 | 1.3943 | 8682896 |
0.1418 | 200.0 | 25000 | 1.5919 | 8752864 |
0.1095 | 201.6024 | 25200 | 1.8591 | 8823744 |
0.1754 | 203.2008 | 25400 | 1.3821 | 8893360 |
0.1078 | 204.8032 | 25600 | 1.5093 | 8963536 |
0.142 | 206.4016 | 25800 | 1.8677 | 9033264 |
0.1256 | 208.0 | 26000 | 1.9379 | 9102880 |
0.1044 | 209.6024 | 26200 | 1.9586 | 9173088 |
0.1361 | 211.2008 | 26400 | 1.8733 | 9242752 |
0.113 | 212.8032 | 26600 | 1.9482 | 9313008 |
0.1621 | 214.4016 | 26800 | 2.2428 | 9382592 |
0.205 | 216.0 | 27000 | 1.7358 | 9452912 |
0.1393 | 217.6024 | 27200 | 2.1324 | 9522896 |
0.0864 | 219.2008 | 27400 | 2.1617 | 9592864 |
0.1246 | 220.8032 | 27600 | 1.9770 | 9663568 |
0.1486 | 222.4016 | 27800 | 2.1721 | 9733504 |
0.1567 | 224.0 | 28000 | 2.1509 | 9803232 |
0.1013 | 225.6024 | 28200 | 2.3648 | 9872976 |
0.0807 | 227.2008 | 28400 | 2.2903 | 9943472 |
0.1315 | 228.8032 | 28600 | 2.0960 | 10013472 |
0.1146 | 230.4016 | 28800 | 2.2468 | 10082944 |
0.1366 | 232.0 | 29000 | 2.2477 | 10153120 |
0.0852 | 233.6024 | 29200 | 2.5634 | 10223856 |
0.1104 | 235.2008 | 29400 | 2.4603 | 10293888 |
0.1038 | 236.8032 | 29600 | 2.3068 | 10363824 |
0.1311 | 238.4016 | 29800 | 2.4379 | 10433056 |
0.1226 | 240.0 | 30000 | 2.4808 | 10503136 |
0.0984 | 241.6024 | 30200 | 2.5300 | 10573568 |
0.0431 | 243.2008 | 30400 | 2.5455 | 10642912 |
0.1029 | 244.8032 | 30600 | 2.5215 | 10713264 |
0.0508 | 246.4016 | 30800 | 2.5379 | 10783152 |
0.1344 | 248.0 | 31000 | 2.5622 | 10853376 |
0.125 | 249.6024 | 31200 | 2.6938 | 10923696 |
0.0967 | 251.2008 | 31400 | 2.6724 | 10994016 |
0.0483 | 252.8032 | 31600 | 2.6530 | 11063664 |
0.0543 | 254.4016 | 31800 | 2.7606 | 11133840 |
0.0534 | 256.0 | 32000 | 2.6676 | 11203504 |
0.114 | 257.6024 | 32200 | 2.7675 | 11273840 |
0.0669 | 259.2008 | 32400 | 2.7834 | 11342832 |
0.0861 | 260.8032 | 32600 | 2.8264 | 11412832 |
0.0728 | 262.4016 | 32800 | 2.8341 | 11482880 |
0.0648 | 264.0 | 33000 | 2.8221 | 11552512 |
0.0826 | 265.6024 | 33200 | 2.8449 | 11622560 |
0.0346 | 267.2008 | 33400 | 2.8784 | 11692336 |
0.065 | 268.8032 | 33600 | 2.9070 | 11763296 |
0.0282 | 270.4016 | 33800 | 2.8172 | 11833168 |
0.0249 | 272.0 | 34000 | 2.9057 | 11902608 |
0.0373 | 273.6024 | 34200 | 2.8805 | 11973440 |
0.0521 | 275.2008 | 34400 | 2.9054 | 12042992 |
0.0441 | 276.8032 | 34600 | 2.9474 | 12113808 |
0.0447 | 278.4016 | 34800 | 2.8835 | 12183456 |
0.039 | 280.0 | 35000 | 2.9349 | 12253312 |
0.0231 | 281.6024 | 35200 | 2.9440 | 12323712 |
0.0388 | 283.2008 | 35400 | 2.9267 | 12393344 |
0.0438 | 284.8032 | 35600 | 2.9261 | 12463296 |
0.0298 | 286.4016 | 35800 | 2.8924 | 12533712 |
0.0312 | 288.0 | 36000 | 2.8364 | 12603312 |
0.0178 | 289.6024 | 36200 | 2.8838 | 12672944 |
0.036 | 291.2008 | 36400 | 2.8664 | 12743584 |
0.0318 | 292.8032 | 36600 | 2.8160 | 12814000 |
0.0053 | 294.4016 | 36800 | 2.8348 | 12883584 |
0.0505 | 296.0 | 37000 | 2.8296 | 12954144 |
0.0175 | 297.6024 | 37200 | 2.8290 | 13024112 |
0.0206 | 299.2008 | 37400 | 2.8553 | 13094448 |
0.0073 | 300.8032 | 37600 | 2.8523 | 13164640 |
0.0062 | 302.4016 | 37800 | 2.8443 | 13234048 |
0.0223 | 304.0 | 38000 | 2.8469 | 13304512 |
0.0032 | 305.6024 | 38200 | 2.8724 | 13374272 |
0.0032 | 307.2008 | 38400 | 2.8650 | 13444512 |
0.0225 | 308.8032 | 38600 | 2.8802 | 13514848 |
0.0149 | 310.4016 | 38800 | 2.8676 | 13584800 |
0.0195 | 312.0 | 39000 | 2.8613 | 13654928 |
0.0023 | 313.6024 | 39200 | 2.8563 | 13724752 |
0.0185 | 315.2008 | 39400 | 2.8380 | 13794224 |
0.0024 | 316.8032 | 39600 | 2.8794 | 13865104 |
0.0162 | 318.4016 | 39800 | 2.8616 | 13935776 |
0.014 | 320.0 | 40000 | 2.8462 | 14005200 |
Framework versions
- PEFT 0.15.2.dev0
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support