SentenceTransformer based on NeuML/pubmedbert-base-embeddings

This is a sentence-transformers model finetuned from NeuML/pubmedbert-base-embeddings on the generator dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: NeuML/pubmedbert-base-embeddings
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • generator

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Cre.s-LAL.s-NO2.b',
    'adult PV4b6 neuron',
    'ER3',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

generator

  • Dataset: generator
  • Size: 20,000 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 3 tokens
    • mean: 8.2 tokens
    • max: 28 tokens
    • min: 3 tokens
    • mean: 8.4 tokens
    • max: 28 tokens
    • min: -1.0
    • mean: 0.21
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    adult clamp neuron 139 adult antler neuron 034 2.7755575615628914e-17
    descending neuron of the anterior dorsal brain DNa07 mALT (VA6) -0.5999999999999999
    M_spPN4t9 M_spPN5t10 1.0
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Evaluation Dataset

generator

  • Dataset: generator
  • Size: 1,000 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 3 tokens
    • mean: 8.07 tokens
    • max: 25 tokens
    • min: 3 tokens
    • mean: 8.22 tokens
    • max: 27 tokens
    • min: -1.0
    • mean: 0.18
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    adult LHAV3k1 neuron OA-VUMa1 -0.5999999999999999
    WED155 adult fruitless aSP-g3 neuron -0.5999999999999999
    ring neuron R4 medial VC2 lPN -0.8
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 512
  • learning_rate: 0.0002
  • weight_decay: 0.01
  • num_train_epochs: 1000
  • warmup_steps: 1000
  • log_level: error
  • log_level_replica: error
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 512
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 0.0002
  • weight_decay: 0.01
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1000
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 1000
  • log_level: error
  • log_level_replica: error
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss
0.5 10 19.9109 -
1.0 20 17.4637 7.0120
1.5 30 14.7406 -
2.0 40 12.7189 3.9087
2.5 50 12.405 -
3.0 60 12.1349 3.5526
3.5 70 12.1681 -
4.0 80 11.9587 3.3929
4.5 90 12.0186 -
5.0 100 11.8004 3.1647
5.5 110 11.785 -
6.0 120 11.5547 2.8057
6.5 130 11.4569 -
7.0 140 11.2584 2.5086
7.5 150 11.2327 -
8.0 160 11.0609 2.2617
8.5 170 11.0131 -
9.0 180 10.8974 2.0437
9.5 190 10.8688 -
10.0 200 10.7265 1.9054
10.5 210 10.7545 -
11.0 220 10.6935 1.8620
11.5 230 10.6229 -
12.0 240 10.5123 1.6515
12.5 250 10.5076 -
13.0 260 10.3677 1.5777
13.5 270 10.3758 -
14.0 280 10.304 1.4596
14.5 290 10.2419 -
15.0 300 10.2104 1.3166
15.5 310 10.1622 -
16.0 320 9.961 1.1535
16.5 330 9.9302 -
17.0 340 9.9979 1.2378
17.5 350 9.9087 -
18.0 360 9.7374 1.0605
18.5 370 9.8141 -
19.0 380 9.6207 0.9017
19.5 390 9.5798 -
20.0 400 9.6272 0.9642
20.5 410 9.5769 -
21.0 420 9.5308 0.8385
21.5 430 9.4968 -
22.0 440 9.3939 0.7927
22.5 450 9.4592 -
23.0 460 9.3345 0.8245
23.5 470 11.6999 -
24.0 480 10.3611 1.0454
24.5 490 9.6768 -
25.0 500 9.5426 0.8532
25.5 510 9.3401 -
26.0 520 9.277 0.8440
26.5 530 9.4937 -
27.0 540 9.3295 0.8681
27.5 550 9.6017 -
28.0 560 11.6154 2.0569
28.5 570 10.1968 -
29.0 580 9.3231 0.9162
29.5 590 9.4204 -
30.0 600 9.1739 0.7456
30.5 610 9.1929 -
31.0 620 9.3143 0.7656
31.5 630 9.3395 -
32.0 640 9.1229 0.9317
32.5 650 9.573 -
33.0 660 9.0695 0.7822
33.5 670 8.802 -
34.0 680 8.8818 0.6566
34.5 690 9.151 -
35.0 700 9.048 0.7099
35.5 710 8.8638 -
36.0 720 8.7823 0.6307
36.5 730 8.7942 -
37.0 740 8.7314 0.7347
37.5 750 8.8099 -
38.0 760 8.7011 0.6218
38.5 770 8.6497 -
39.0 780 8.7962 0.6777
39.5 790 8.6928 -
40.0 800 8.8479 0.6393
40.5 810 8.6913 -
41.0 820 8.7366 0.6592
41.5 830 8.6731 -
42.0 840 8.6979 0.5460
42.5 850 8.7302 -
43.0 860 8.7753 0.5943
43.5 870 8.6553 -
44.0 880 8.5671 0.6461
44.5 890 8.6556 -
45.0 900 8.5739 0.6140
45.5 910 8.5112 -
46.0 920 8.524 0.6342
46.5 930 8.634 -
47.0 940 8.4882 0.5895
47.5 950 8.6335 -
48.0 960 8.4624 0.5184
48.5 970 8.6237 -
49.0 980 8.8367 0.5342
49.5 990 8.5192 -
50.0 1000 8.5021 0.5561
50.5 1010 8.4785 -
51.0 1020 8.3295 0.5013
51.5 1030 8.4542 -
52.0 1040 9.1433 0.6288
52.5 1050 8.6808 -
53.0 1060 8.596 0.5271
53.5 1070 8.439 -
54.0 1080 8.2933 0.5352
54.5 1090 8.4107 -
55.0 1100 8.2689 0.4544
55.5 1110 8.5022 -
56.0 1120 10.4796 0.7063
56.5 1130 8.8195 -
57.0 1140 8.6344 0.5321
57.5 1150 8.5043 -
58.0 1160 8.2681 0.4399
58.5 1170 8.1574 -
59.0 1180 8.2343 0.5245
59.5 1190 8.4271 -
60.0 1200 8.1909 0.4833
60.5 1210 8.1747 -
61.0 1220 8.046 0.4364
61.5 1230 9.2156 -
62.0 1240 8.0486 0.3970
62.5 1250 8.115 -
63.0 1260 8.1234 0.4158
63.5 1270 8.0361 -
64.0 1280 7.9846 0.4087
64.5 1290 8.0144 -
65.0 1300 7.9437 0.4088
65.5 1310 9.3975 -
66.0 1320 8.0125 0.4050
66.5 1330 8.0092 -
67.0 1340 8.0379 0.4736
67.5 1350 8.0598 -
68.0 1360 7.9807 0.3962
68.5 1370 8.1957 -
69.0 1380 7.8546 0.4044
69.5 1390 7.9461 -
70.0 1400 7.9233 0.4166
70.5 1410 7.9779 -
71.0 1420 7.8192 0.3930
71.5 1430 7.9091 -
72.0 1440 7.8167 0.4077
72.5 1450 7.9041 -
73.0 1460 7.7646 0.3514
73.5 1470 7.848 -
74.0 1480 7.7369 0.3591
74.5 1490 8.2404 -
75.0 1500 7.7233 0.3435
75.5 1510 7.7716 -
76.0 1520 7.7292 0.3469
76.5 1530 7.9558 -
77.0 1540 7.6599 0.3352
77.5 1550 7.7658 -
78.0 1560 7.6396 0.3181
78.5 1570 7.7419 -
79.0 1580 7.6574 0.3223
79.5 1590 7.719 -
80.0 1600 7.7039 0.3405
80.5 1610 7.7925 -
81.0 1620 7.5967 0.3156
81.5 1630 7.7416 -
82.0 1640 7.5751 0.3381
82.5 1650 7.6652 -
83.0 1660 7.7724 0.3296
83.5 1670 7.8028 -
84.0 1680 7.5706 0.3234
84.5 1690 7.6578 -
85.0 1700 7.4778 0.3102
85.5 1710 7.5892 -
86.0 1720 7.5219 0.3082
86.5 1730 7.6192 -
87.0 1740 7.4826 0.2976
87.5 1750 7.59 -
88.0 1760 7.5426 0.3277
88.5 1770 7.6051 -
89.0 1780 7.5011 0.3018
89.5 1790 7.5256 -
90.0 1800 7.4843 0.2801
90.5 1810 8.2916 -
91.0 1820 7.5131 0.2787
91.5 1830 7.5412 -
92.0 1840 7.4474 0.2869
92.5 1850 7.5188 -
93.0 1860 7.5668 0.3125
93.5 1870 7.6351 -
94.0 1880 7.4227 0.2705
94.5 1890 7.527 -
95.0 1900 7.5069 0.2784
95.5 1910 7.5677 -
96.0 1920 7.3898 0.3111
96.5 1930 7.5176 -
97.0 1940 7.3906 0.2911
97.5 1950 7.486 -
98.0 1960 7.3852 0.2820
98.5 1970 7.4445 -
99.0 1980 7.397 0.2863
99.5 1990 7.4387 -
100.0 2000 7.3404 0.2763
100.5 2010 7.4415 -
101.0 2020 7.3133 0.2585
101.5 2030 7.4206 -
102.0 2040 7.3097 0.2755
102.5 2050 7.4239 -
103.0 2060 7.3216 0.2632
103.5 2070 7.3893 -
104.0 2080 7.3105 0.2475
104.5 2090 7.3758 -
105.0 2100 7.2963 0.2660
105.5 2110 7.3421 -
106.0 2120 7.3074 0.2573
106.5 2130 7.345 -
107.0 2140 7.2885 0.2607
107.5 2150 7.4301 -
108.0 2160 7.3196 0.2817
108.5 2170 7.9997 -
109.0 2180 7.2407 0.2456
109.5 2190 7.3354 -
110.0 2200 7.2453 0.2424
110.5 2210 7.3321 -
111.0 2220 7.2925 0.2641
111.5 2230 7.3301 -
112.0 2240 7.3245 0.2444
112.5 2250 7.339 -
113.0 2260 7.2265 0.2422
113.5 2270 7.2919 -
114.0 2280 7.2328 0.2401
114.5 2290 7.2449 -
115.0 2300 7.2363 0.2330
115.5 2310 7.3134 -
116.0 2320 7.1926 0.2388
116.5 2330 7.3273 -
117.0 2340 7.1976 0.2220
117.5 2350 7.5078 -
118.0 2360 7.2046 0.2310
118.5 2370 7.3248 -
119.0 2380 7.4819 0.2409
119.5 2390 7.2883 -
120.0 2400 7.2372 0.2270
120.5 2410 7.2622 -
121.0 2420 7.2086 0.2474
121.5 2430 7.2437 -
122.0 2440 7.2942 0.2358
122.5 2450 7.3028 -
123.0 2460 7.1942 0.2194
123.5 2470 7.315 -
124.0 2480 7.2456 0.2418
124.5 2490 7.2401 -
125.0 2500 7.1893 0.2260
125.5 2510 7.2411 -
126.0 2520 7.1649 0.2167
126.5 2530 7.2444 -
127.0 2540 7.1287 0.2230
127.5 2550 7.2422 -
128.0 2560 7.246 0.2248
128.5 2570 7.2329 -
129.0 2580 7.3102 0.2295
129.5 2590 7.255 -
130.0 2600 7.1417 0.2366
130.5 2610 7.2328 -
131.0 2620 7.1106 0.2286
131.5 2630 7.1831 -
132.0 2640 7.1466 0.2385
132.5 2650 7.1947 -
133.0 2660 7.2067 0.2316
133.5 2670 7.26 -
134.0 2680 7.1126 0.2173
134.5 2690 7.2109 -
135.0 2700 7.1089 0.2162
135.5 2710 7.1891 -
136.0 2720 7.1266 0.2195
136.5 2730 7.242 -
137.0 2740 7.1126 0.2263
137.5 2750 7.1689 -
138.0 2760 7.1714 0.2216
138.5 2770 7.1858 -
139.0 2780 7.0593 0.2225
139.5 2790 7.188 -
140.0 2800 7.0789 0.2085
140.5 2810 7.1903 -
141.0 2820 7.0341 0.2143
141.5 2830 7.1918 -
142.0 2840 7.0656 0.2200
142.5 2850 7.2065 -
143.0 2860 7.2527 0.2311
143.5 2870 7.2303 -
144.0 2880 7.074 0.2322
144.5 2890 7.18 -
145.0 2900 7.119 0.2383
145.5 2910 7.2381 -
146.0 2920 7.0839 0.2093
146.5 2930 7.1693 -
147.0 2940 7.1101 0.2369
147.5 2950 7.1654 -
148.0 2960 7.0496 0.2148
148.5 2970 7.1968 -
149.0 2980 7.0191 0.2135
149.5 2990 7.1794 -
150.0 3000 7.0124 0.2216
150.5 3010 7.1553 -
151.0 3020 7.0414 0.2020
151.5 3030 7.1327 -
152.0 3040 7.0216 0.2151
152.5 3050 7.1254 -
153.0 3060 7.0144 0.2033
153.5 3070 7.1022 -
154.0 3080 7.0298 0.2037
154.5 3090 7.1334 -
155.0 3100 7.0056 0.2100
155.5 3110 7.0965 -
156.0 3120 7.0699 0.2045
156.5 3130 7.1156 -
157.0 3140 6.9935 0.2085
157.5 3150 7.0845 -
158.0 3160 7.0256 0.2076
158.5 3170 7.1178 -
159.0 3180 7.0032 0.2058
159.5 3190 7.1193 -
160.0 3200 6.957 0.2035
160.5 3210 7.1136 -
161.0 3220 6.969 0.2037
161.5 3230 7.0857 -
162.0 3240 6.9946 0.1987
162.5 3250 7.0948 -
163.0 3260 6.9614 0.2008
163.5 3270 7.0602 -
164.0 3280 6.9612 0.2068
164.5 3290 7.0695 -
165.0 3300 6.9702 0.1915
165.5 3310 7.0311 -
166.0 3320 6.99 0.2022
166.5 3330 7.0896 -
167.0 3340 6.9511 0.1950
167.5 3350 7.0873 -
168.0 3360 6.9398 0.2014
168.5 3370 7.0878 -
169.0 3380 6.9356 0.1872
169.5 3390 7.0618 -
170.0 3400 6.9482 0.2062
170.5 3410 7.0647 -
171.0 3420 6.948 0.1966
171.5 3430 7.0498 -
172.0 3440 6.9648 0.2134
172.5 3450 7.0034 -
173.0 3460 7.0078 0.1867
173.5 3470 7.0408 -
174.0 3480 6.9301 0.1983
174.5 3490 7.0364 -
175.0 3500 6.9709 0.1958
175.5 3510 7.0814 -
176.0 3520 6.893 0.1889
176.5 3530 7.0337 -
177.0 3540 6.9331 0.1960
177.5 3550 7.0364 -
178.0 3560 6.9226 0.1982
178.5 3570 7.0545 -
179.0 3580 6.8758 0.1889
179.5 3590 6.9789 -
180.0 3600 6.9521 0.1973
180.5 3610 7.0459 -
181.0 3620 6.9028 0.1915
181.5 3630 7.0079 -
182.0 3640 6.9165 0.1890
182.5 3650 7.0282 -
183.0 3660 6.8818 0.1892
183.5 3670 7.0125 -
184.0 3680 6.9183 0.1892
184.5 3690 7.0244 -
185.0 3700 6.8807 0.1903
185.5 3710 7.018 -
186.0 3720 6.9414 0.1921
186.5 3730 6.9852 -
187.0 3740 6.9213 0.1880
187.5 3750 6.9851 -
188.0 3760 6.898 0.1876
188.5 3770 6.9728 -
189.0 3780 6.9202 0.1835
189.5 3790 6.9902 -
190.0 3800 6.9115 0.1820
190.5 3810 6.9839 -
191.0 3820 6.8883 0.1789
191.5 3830 6.9655 -
192.0 3840 6.8899 0.1875
192.5 3850 6.9766 -
193.0 3860 6.886 0.1897
193.5 3870 6.9624 -
194.0 3880 6.8916 0.1802
194.5 3890 6.9895 -
195.0 3900 6.8517 0.1851
195.5 3910 6.9667 -
196.0 3920 6.8965 0.1762
196.5 3930 6.9594 -
197.0 3940 6.8658 0.1815
197.5 3950 6.9563 -
198.0 3960 6.8661 0.1782
198.5 3970 6.9618 -
199.0 3980 6.8703 0.1816
199.5 3990 6.9704 -
200.0 4000 6.8489 0.1835
200.5 4010 6.965 -
201.0 4020 6.8764 0.1738
201.5 4030 6.9466 -
202.0 4040 6.879 0.1868
202.5 4050 6.938 -
203.0 4060 6.8561 0.1851
203.5 4070 6.9122 -
204.0 4080 6.8943 0.1902
204.5 4090 6.9584 -
205.0 4100 6.8486 0.1778
205.5 4110 6.931 -
206.0 4120 6.8567 0.1818
206.5 4130 6.9478 -
207.0 4140 6.8414 0.1807
207.5 4150 6.9204 -
208.0 4160 6.8567 0.1902
208.5 4170 6.9483 -
209.0 4180 6.8305 0.1748
209.5 4190 6.9605 -
210.0 4200 6.8724 0.1772
210.5 4210 6.9584 -
211.0 4220 6.805 0.1741
211.5 4230 6.9476 -
212.0 4240 6.8164 0.1839
212.5 4250 6.9448 -
213.0 4260 6.8222 0.1775
213.5 4270 6.8982 -
214.0 4280 6.8395 0.1793
214.5 4290 6.9232 -
215.0 4300 6.8303 0.1805
215.5 4310 6.9659 -
216.0 4320 6.8167 0.1738
216.5 4330 6.9375 -
217.0 4340 6.8303 0.1686
217.5 4350 6.923 -
218.0 4360 6.8062 0.1841
218.5 4370 6.8888 -
219.0 4380 6.8539 0.1737
219.5 4390 6.9011 -
220.0 4400 6.8197 0.1713
220.5 4410 6.8992 -
221.0 4420 6.8275 0.1801
221.5 4430 6.8786 -
222.0 4440 6.8548 0.1652
222.5 4450 6.8928 -
223.0 4460 6.8299 0.1754
223.5 4470 7.4321 -
224.0 4480 6.8329 0.1740
224.5 4490 6.8747 -
225.0 4500 8.5382 0.1778
225.5 4510 6.9066 -
226.0 4520 6.8173 0.1646
226.5 4530 6.9099 -
227.0 4540 6.8031 0.1777
227.5 4550 6.9093 -
228.0 4560 6.7979 0.1747
228.5 4570 6.911 -
229.0 4580 6.8219 0.1785
229.5 4590 6.9215 -
230.0 4600 6.7945 0.1691
230.5 4610 6.8961 -
231.0 4620 6.8012 0.1705
231.5 4630 6.8729 -
232.0 4640 6.8275 0.1753
232.5 4650 6.8809 -
233.0 4660 6.8187 0.1710
233.5 4670 6.8826 -
234.0 4680 6.8008 0.1792
234.5 4690 6.8788 -
235.0 4700 6.8109 0.1707
235.5 4710 6.8964 -
236.0 4720 6.7734 0.1687
236.5 4730 6.8958 -
237.0 4740 6.7856 0.1723
237.5 4750 6.8939 -
238.0 4760 6.7774 0.1726
238.5 4770 6.8887 -
239.0 4780 6.7715 0.1692
239.5 4790 6.8975 -
240.0 4800 6.776 0.1755
240.5 4810 6.8882 -
241.0 4820 6.7903 0.1745
241.5 4830 6.8921 -
242.0 4840 6.7812 0.1754
242.5 4850 7.0082 -
243.0 4860 6.7557 0.1745
243.5 4870 6.8783 -
244.0 4880 6.7949 0.1615
244.5 4890 6.8504 -
245.0 4900 6.7911 0.1702
245.5 4910 6.8504 -
246.0 4920 6.8029 0.1656
246.5 4930 6.9144 -
247.0 4940 6.7327 0.1728
247.5 4950 8.0331 -
248.0 4960 6.7791 0.1716
248.5 4970 6.9052 -
249.0 4980 6.7649 0.1690
249.5 4990 6.8902 -
250.0 5000 6.7772 0.1744
250.5 5010 6.8707 -
251.0 5020 6.7766 0.1724
251.5 5030 6.8346 -
252.0 5040 6.8026 0.1705
252.5 5050 6.8656 -
253.0 5060 6.7768 0.1786
253.5 5070 6.9205 -
254.0 5080 6.7738 0.1663
254.5 5090 6.8854 -
255.0 5100 6.7526 0.1621
255.5 5110 6.8778 -
256.0 5120 9.8809 0.1724
256.5 5130 6.8801 -
257.0 5140 6.7581 0.1638
257.5 5150 6.8653 -
258.0 5160 6.7614 0.1688
258.5 5170 6.8389 -
259.0 5180 6.7909 0.1655
259.5 5190 6.8457 -
260.0 5200 6.7657 0.1675
260.5 5210 6.8577 -
261.0 5220 6.841 0.1690
261.5 5230 6.884 -
262.0 5240 6.7503 0.1679
262.5 5250 6.8515 -
263.0 5260 6.7586 0.1664
263.5 5270 6.8659 -
264.0 5280 6.7481 0.1700
264.5 5290 6.9024 -
265.0 5300 6.7086 0.1642
265.5 5310 6.8502 -
266.0 5320 6.7626 0.1793
266.5 5330 6.8511 -
267.0 5340 6.756 0.1634
267.5 5350 6.8528 -
268.0 5360 6.7468 0.1766
268.5 5370 6.8782 -
269.0 5380 6.7037 0.1642
269.5 5390 6.8634 -
270.0 5400 6.7285 0.1661
270.5 5410 6.8461 -
271.0 5420 6.748 0.1656
271.5 5430 6.8454 -
272.0 5440 6.7433 0.1646
272.5 5450 6.8449 -
273.0 5460 6.7498 0.1672
273.5 5470 6.8416 -
274.0 5480 6.7495 0.1689
274.5 5490 6.8519 -
275.0 5500 6.7404 0.1678
275.5 5510 6.838 -
276.0 5520 6.7434 0.1735
276.5 5530 6.8501 -
277.0 5540 6.7256 0.1651
277.5 5550 6.8385 -
278.0 5560 6.7386 0.1580
278.5 5570 6.8397 -
279.0 5580 6.7109 0.1671
279.5 5590 6.789 -
280.0 5600 6.7658 0.1729
280.5 5610 6.851 -
281.0 5620 6.7116 0.1754
281.5 5630 6.835 -
282.0 5640 6.7172 0.1603
282.5 5650 6.8219 -
283.0 5660 6.7321 0.1663
283.5 5670 6.8331 -
284.0 5680 6.71 0.1659
284.5 5690 6.8002 -
285.0 5700 6.7571 0.1626
285.5 5710 6.8198 -
286.0 5720 6.7332 0.1643
286.5 5730 6.8528 -
287.0 5740 6.702 0.1633
287.5 5750 6.8481 -
288.0 5760 6.7125 0.1596
288.5 5770 6.8321 -
289.0 5780 6.7226 0.1603
289.5 5790 6.7964 -
290.0 5800 6.7364 0.1613
290.5 5810 6.8331 -
291.0 5820 6.6958 0.1637
291.5 5830 6.8356 -
292.0 5840 6.7148 0.1742
292.5 5850 6.8046 -
293.0 5860 6.8501 0.1632
293.5 5870 6.8291 -
294.0 5880 6.7202 0.1628
294.5 5890 6.8029 -
295.0 5900 6.728 0.1622
295.5 5910 6.8125 -
296.0 5920 6.7123 0.1621
296.5 5930 7.0199 -
297.0 5940 6.7569 0.1620
297.5 5950 6.7972 -
298.0 5960 6.7348 0.1583
298.5 5970 6.7892 -
299.0 5980 6.7298 0.1634
299.5 5990 6.8092 -
300.0 6000 6.7101 0.1615
300.5 6010 6.7635 -
301.0 6020 6.7484 0.1598
301.5 6030 6.8296 -
302.0 6040 6.6706 0.1588
302.5 6050 6.8286 -
303.0 6060 6.6826 0.1599
303.5 6070 6.8109 -
304.0 6080 6.693 0.1572
304.5 6090 6.8192 -
305.0 6100 6.74 0.1675
305.5 6110 6.7994 -
306.0 6120 6.7421 0.1622
306.5 6130 6.8199 -
307.0 6140 6.6994 0.1638
307.5 6150 6.8117 -
308.0 6160 6.6952 0.1569
308.5 6170 6.7964 -
309.0 6180 6.6915 0.1587
309.5 6190 6.8013 -
310.0 6200 6.7051 0.1611
310.5 6210 6.7978 -
311.0 6220 6.6967 0.1597
311.5 6230 6.8144 -
312.0 6240 6.6835 0.1599
312.5 6250 6.7833 -
313.0 6260 6.7007 0.1588
313.5 6270 6.8123 -
314.0 6280 6.6932 0.1589
314.5 6290 6.8083 -
315.0 6300 6.6835 0.1611
315.5 6310 6.7879 -
316.0 6320 6.7077 0.1571
316.5 6330 6.7638 -
317.0 6340 6.7302 0.1724
317.5 6350 6.7794 -
318.0 6360 6.7029 0.1612
318.5 6370 6.7934 -
319.0 6380 6.6822 0.1597
319.5 6390 6.7621 -
320.0 6400 6.7154 0.1608
320.5 6410 6.812 -
321.0 6420 6.6703 0.1578
321.5 6430 6.7804 -
322.0 6440 6.6986 0.1605
322.5 6450 6.7891 -
323.0 6460 6.6947 0.1612
323.5 6470 6.7558 -
324.0 6480 6.7206 0.1567
324.5 6490 6.8043 -
325.0 6500 6.6728 0.1564
325.5 6510 6.7906 -
326.0 6520 6.6797 0.1606
326.5 6530 6.7844 -
327.0 6540 6.6851 0.1582
327.5 6550 6.7717 -
328.0 6560 6.6996 0.1563
328.5 6570 6.7978 -
329.0 6580 6.6617 0.1560
329.5 6590 6.7737 -
330.0 6600 6.6825 0.1557
330.5 6610 6.7752 -
331.0 6620 6.6982 0.1549
331.5 6630 6.7601 -
332.0 6640 6.7114 0.1606
332.5 6650 6.806 -
333.0 6660 6.677 0.1571
333.5 6670 6.7575 -
334.0 6680 6.7122 0.1552
334.5 6690 6.7681 -
335.0 6700 6.6944 0.1599
335.5 6710 6.7792 -
336.0 6720 6.6825 0.1598
336.5 6730 6.7511 -
337.0 6740 6.6968 0.1556
337.5 6750 6.7815 -
338.0 6760 6.6713 0.1556
338.5 6770 6.7919 -
339.0 6780 6.6605 0.1566
339.5 6790 6.755 -
340.0 6800 6.6953 0.1572
340.5 6810 6.779 -
341.0 6820 6.6694 0.1597
341.5 6830 6.7439 -
342.0 6840 6.7017 0.1583
342.5 6850 6.799 -
343.0 6860 6.6379 0.1532
343.5 6870 6.7896 -
344.0 6880 6.6532 0.1553
344.5 6890 6.7552 -
345.0 6900 6.6977 0.1576
345.5 6910 6.7723 -
346.0 6920 6.6834 0.1537
346.5 6930 6.7764 -
347.0 6940 6.6645 0.1546
347.5 6950 6.7908 -
348.0 6960 6.6516 0.1562
348.5 6970 6.7792 -
349.0 6980 6.6618 0.1595
349.5 6990 6.7343 -
350.0 7000 6.7068 0.1571
350.5 7010 6.7643 -
351.0 7020 6.6738 0.1538
351.5 7030 6.7812 -
352.0 7040 6.6481 0.1534
352.5 7050 6.7454 -
353.0 7060 6.6848 0.1542
353.5 7070 6.7839 -
354.0 7080 6.6546 0.1537
354.5 7090 6.7705 -
355.0 7100 6.6734 0.1561
355.5 7110 6.7908 -
356.0 7120 6.6443 0.1566
356.5 7130 6.7688 -
357.0 7140 6.6634 0.1557
357.5 7150 6.7582 -
358.0 7160 6.674 0.1535
358.5 7170 6.7509 -
359.0 7180 6.6779 0.1573
359.5 7190 6.7685 -
360.0 7200 6.6487 0.1523
360.5 7210 6.7592 -
361.0 7220 6.6617 0.1591
361.5 7230 6.7732 -
362.0 7240 6.6552 0.1560
362.5 7250 6.8622 -
363.0 7260 6.6674 0.1545
363.5 7270 6.7606 -
364.0 7280 6.6619 0.1528
364.5 7290 6.7568 -
365.0 7300 6.6777 0.1540
365.5 7310 6.7349 -
366.0 7320 6.6638 0.1568
366.5 7330 6.7774 -
367.0 7340 6.619 0.1548
367.5 7350 6.7796 -
368.0 7360 6.6357 0.1540
368.5 7370 6.7857 -
369.0 7380 6.6375 0.1523
369.5 7390 6.7819 -
370.0 7400 6.6418 0.1525
370.5 7410 6.7797 -
371.0 7420 6.6345 0.1540
371.5 7430 6.749 -
372.0 7440 6.6591 0.1547
372.5 7450 6.7405 -
373.0 7460 6.6604 0.1532
373.5 7470 6.759 -
374.0 7480 6.6472 0.1541
374.5 7490 6.7518 -
375.0 7500 6.6471 0.1486
375.5 7510 6.7259 -
376.0 7520 6.6707 0.1549
376.5 7530 6.7204 -
377.0 7540 6.6718 0.1531
377.5 7550 6.7617 -
378.0 7560 6.638 0.1547
378.5 7570 6.7444 -
379.0 7580 6.6606 0.1478
379.5 7590 6.7434 -
380.0 7600 6.662 0.1519
380.5 7610 6.7449 -
381.0 7620 6.6635 0.1562
381.5 7630 6.7355 -
382.0 7640 6.6686 0.1533
382.5 7650 6.7449 -
383.0 7660 6.6506 0.1514
383.5 7670 6.7512 -
384.0 7680 6.6437 0.1564
384.5 7690 6.7595 -
385.0 7700 6.6384 0.1535
385.5 7710 6.7886 -
386.0 7720 6.6128 0.1523
386.5 7730 6.7629 -
387.0 7740 6.6577 0.1525
387.5 7750 6.7546 -
388.0 7760 6.6335 0.1500
388.5 7770 6.7013 -
389.0 7780 6.6951 0.1520
389.5 7790 6.749 -
390.0 7800 6.6333 0.1493
390.5 7810 6.7167 -
391.0 7820 6.664 0.1494
391.5 7830 6.7343 -
392.0 7840 6.6554 0.1519
392.5 7850 6.7248 -
393.0 7860 6.6631 0.1532
393.5 7870 6.7581 -
394.0 7880 6.6501 0.1514
394.5 7890 6.7384 -
395.0 7900 6.6509 0.1503
395.5 7910 6.7396 -
396.0 7920 6.659 0.1553
396.5 7930 6.7383 -
397.0 7940 6.6577 0.1533
397.5 7950 6.733 -
398.0 7960 6.663 0.1539
398.5 7970 6.7567 -
399.0 7980 6.6343 0.1520
399.5 7990 6.763 -
400.0 8000 6.6192 0.1510
400.5 8010 6.7434 -
401.0 8020 6.6316 0.1481
401.5 8030 6.7141 -
402.0 8040 6.6689 0.1502
402.5 8050 6.7198 -
403.0 8060 6.6641 0.1493
403.5 8070 6.7392 -
404.0 8080 6.6307 0.1505
404.5 8090 6.7452 -
405.0 8100 6.6364 0.1516
405.5 8110 6.7063 -
406.0 8120 6.6557 0.1489
406.5 8130 6.7263 -
407.0 8140 6.6398 0.1540
407.5 8150 6.7167 -
408.0 8160 6.6484 0.1561
408.5 8170 6.7201 -
409.0 8180 6.6625 0.1506
409.5 8190 6.743 -
410.0 8200 6.6334 0.1508
410.5 8210 6.7615 -
411.0 8220 6.606 0.1505
411.5 8230 6.7245 -
412.0 8240 6.643 0.1493
412.5 8250 6.7429 -
413.0 8260 6.628 0.1513
413.5 8270 6.7173 -
414.0 8280 6.6478 0.1516
414.5 8290 6.7299 -
415.0 8300 6.6432 0.1519
415.5 8310 6.7593 -
416.0 8320 6.6105 0.1495
416.5 8330 6.7723 -
417.0 8340 6.5943 0.1491
417.5 8350 6.7793 -
418.0 8360 6.601 0.1529
418.5 8370 6.7238 -
419.0 8380 6.639 0.1515
419.5 8390 6.7428 -
420.0 8400 6.6179 0.1474
420.5 8410 6.7211 -
421.0 8420 6.6461 0.1526
421.5 8430 6.7107 -
422.0 8440 6.6589 0.1505
422.5 8450 7.0735 -
423.0 8460 6.5762 0.1541
423.5 8470 6.7339 -
424.0 8480 6.6259 0.1488
424.5 8490 6.7302 -
425.0 8500 6.631 0.1521
425.5 8510 6.7197 -
426.0 8520 6.6568 0.1511
426.5 8530 6.7417 -
427.0 8540 6.631 0.1488
427.5 8550 6.7567 -
428.0 8560 6.6083 0.1549
428.5 8570 6.7 -
429.0 8580 6.6624 0.1527
429.5 8590 6.7601 -
430.0 8600 6.6008 0.1494
430.5 8610 6.7028 -
431.0 8620 6.651 0.1556
431.5 8630 6.7364 -
432.0 8640 6.6217 0.1503
432.5 8650 6.7211 -
433.0 8660 6.6286 0.1527
433.5 8670 6.7256 -
434.0 8680 6.6138 0.1517
434.5 8690 6.7164 -
435.0 8700 6.6373 0.1506
435.5 8710 6.7277 -
436.0 8720 6.6315 0.1520
436.5 8730 6.7179 -
437.0 8740 6.6329 0.1532
437.5 8750 6.7442 -
438.0 8760 6.5986 0.1494
438.5 8770 6.7248 -
439.0 8780 6.6267 0.1506
439.5 8790 6.725 -
440.0 8800 6.6293 0.1516
440.5 8810 6.732 -
441.0 8820 6.6173 0.1481
441.5 8830 6.713 -
442.0 8840 6.6221 0.1465
442.5 8850 6.788 -
443.0 8860 6.6528 0.1513
443.5 8870 6.7056 -
444.0 8880 6.6466 0.1471
444.5 8890 6.7188 -
445.0 8900 6.6314 0.1482
445.5 8910 6.7209 -
446.0 8920 6.6247 0.1517
446.5 8930 6.7086 -
447.0 8940 6.6361 0.1497
447.5 8950 6.7256 -
448.0 8960 6.6152 0.1510
448.5 8970 6.7085 -
449.0 8980 6.6289 0.1505
449.5 8990 6.7011 -
450.0 9000 6.6454 0.1483
450.5 9010 6.7432 -
451.0 9020 6.6108 0.1501
451.5 9030 6.769 -
452.0 9040 6.5794 0.1478
452.5 9050 6.7104 -
453.0 9060 6.6286 0.1515
453.5 9070 6.7384 -
454.0 9080 6.5967 0.1474
454.5 9090 6.7368 -
455.0 9100 6.5975 0.1472
455.5 9110 6.7432 -
456.0 9120 6.5927 0.1487
456.5 9130 6.745 -
457.0 9140 6.5886 0.1516
457.5 9150 6.725 -
458.0 9160 6.6134 0.1534
458.5 9170 6.7124 -
459.0 9180 6.6306 0.1515
459.5 9190 6.7563 -
460.0 9200 6.5884 0.1505
460.5 9210 6.7327 -
461.0 9220 6.6143 0.1489
461.5 9230 6.7062 -
462.0 9240 6.6239 0.1486
462.5 9250 6.716 -
463.0 9260 6.6472 0.1491
463.5 9270 6.7583 -
464.0 9280 6.6011 0.1516
464.5 9290 6.7317 -
465.0 9300 6.5945 0.1479
465.5 9310 6.7414 -
466.0 9320 6.5978 0.1487
466.5 9330 6.7085 -
467.0 9340 6.6269 0.1488
467.5 9350 6.7352 -
468.0 9360 6.6015 0.1490
468.5 9370 6.7078 -
469.0 9380 6.6225 0.1484
469.5 9390 6.7081 -
470.0 9400 6.6253 0.1489
470.5 9410 6.7148 -
471.0 9420 6.5981 0.1476
471.5 9430 6.7092 -
472.0 9440 6.6218 0.1504
472.5 9450 6.7367 -
473.0 9460 6.5931 0.1477
473.5 9470 6.7135 -
474.0 9480 6.6009 0.1470
474.5 9490 6.7379 -
475.0 9500 6.5831 0.1543
475.5 9510 6.728 -
476.0 9520 7.6413 0.1543
476.5 9530 6.733 -
477.0 9540 6.5975 0.1524
477.5 9550 6.7116 -
478.0 9560 6.615 0.1485
478.5 9570 6.7202 -
479.0 9580 7.6987 0.1553
479.5 9590 6.7363 -
480.0 9600 6.6226 0.1495
480.5 9610 6.7374 -
481.0 9620 6.6088 0.1516
481.5 9630 6.7511 -
482.0 9640 6.5854 0.1498
482.5 9650 6.6996 -
483.0 9660 6.6267 0.1490
483.5 9670 6.7086 -
484.0 9680 6.6318 0.1517
484.5 9690 6.7173 -
485.0 9700 6.6142 0.1605
485.5 9710 7.4761 -
486.0 9720 6.5877 0.1504
486.5 9730 6.7279 -
487.0 9740 6.5985 0.1481
487.5 9750 6.7345 -
488.0 9760 6.6008 0.1481
488.5 9770 6.7376 -
489.0 9780 6.6242 0.1478
489.5 9790 6.7476 -
490.0 9800 6.5759 0.1480
490.5 9810 7.2562 -
491.0 9820 6.6046 0.1492
491.5 9830 6.7093 -
492.0 9840 6.611 0.1512
492.5 9850 6.7209 -
493.0 9860 6.6048 0.1480
493.5 9870 6.7256 -
494.0 9880 6.588 0.1489
494.5 9890 6.7016 -
495.0 9900 6.627 0.1466
495.5 9910 6.7061 -
496.0 9920 6.6034 0.1494
496.5 9930 6.6958 -
497.0 9940 6.6214 0.1479
497.5 9950 6.7141 -
498.0 9960 6.6653 0.1519
498.5 9970 6.7221 -
499.0 9980 6.6032 0.1499
499.5 9990 6.7154 -
500.0 10000 6.6122 0.1480
500.5 10010 6.7208 -
501.0 10020 6.5897 0.1433
501.5 10030 6.6993 -
502.0 10040 6.6084 0.1728
502.5 10050 6.7107 -
503.0 10060 6.6163 0.1457
503.5 10070 6.7173 -
504.0 10080 6.5962 0.1583
504.5 10090 6.7168 -
505.0 10100 6.6074 0.1465
505.5 10110 6.6861 -
506.0 10120 6.6313 0.1502
506.5 10130 6.6912 -
507.0 10140 6.6219 0.1479
507.5 10150 6.6997 -
508.0 10160 6.6073 0.1516
508.5 10170 6.7305 -
509.0 10180 6.5817 0.1475
509.5 10190 6.7175 -
510.0 10200 6.5866 0.1489
510.5 10210 6.7066 -
511.0 10220 6.6071 0.1474
511.5 10230 6.7261 -
512.0 10240 6.5728 0.1488
512.5 10250 6.7221 -
513.0 10260 6.5948 0.1476
513.5 10270 6.6816 -
514.0 10280 6.6201 0.1474
514.5 10290 6.6926 -
515.0 10300 6.6132 0.1494
515.5 10310 6.7038 -
516.0 10320 6.6008 0.1485
516.5 10330 6.7143 -
517.0 10340 6.5858 0.1476
517.5 10350 6.6841 -
518.0 10360 6.6226 0.1469
518.5 10370 6.7426 -
519.0 10380 6.6455 0.1492
519.5 10390 6.6961 -
520.0 10400 6.5973 0.1468
520.5 10410 6.6745 -
521.0 10420 6.6183 0.1470
521.5 10430 6.7129 -
522.0 10440 6.7521 0.1479
522.5 10450 6.6793 -
523.0 10460 6.634 0.1452
523.5 10470 6.7125 -
524.0 10480 6.7809 0.1455
524.5 10490 6.7088 -
525.0 10500 6.5867 0.1446
525.5 10510 6.7086 -
526.0 10520 6.6048 0.1453
526.5 10530 6.7022 -
527.0 10540 6.6025 0.1461
527.5 10550 6.7317 -
528.0 10560 6.6117 0.1478
528.5 10570 6.7667 -
529.0 10580 6.6131 0.1513
529.5 10590 6.7498 -
530.0 10600 6.5971 0.1455
530.5 10610 6.7102 -
531.0 10620 6.6072 0.1472
531.5 10630 6.701 -
532.0 10640 6.5972 0.1464
532.5 10650 6.709 -
533.0 10660 6.5829 0.1481
533.5 10670 6.7349 -
534.0 10680 6.5638 0.1482
534.5 10690 6.7368 -
535.0 10700 6.5473 0.1475
535.5 10710 6.704 -
536.0 10720 6.5819 0.1453
536.5 10730 6.7194 -
537.0 10740 6.5725 0.1473
537.5 10750 6.6773 -
538.0 10760 6.6182 0.1463
538.5 10770 6.6808 -
539.0 10780 6.6215 0.1483
539.5 10790 6.7099 -
540.0 10800 6.5806 0.1457
540.5 10810 6.6902 -
541.0 10820 6.5952 0.1498
541.5 10830 6.6938 -
542.0 10840 6.599 0.1445
542.5 10850 6.7154 -
543.0 10860 6.5738 0.1467
543.5 10870 6.6856 -
544.0 10880 6.6059 0.1439
544.5 10890 6.6873 -
545.0 10900 6.5902 0.1481
545.5 10910 6.6941 -
546.0 10920 6.588 0.1461
546.5 10930 6.6956 -
547.0 10940 6.5867 0.1464
547.5 10950 6.6977 -
548.0 10960 6.5929 0.1489
548.5 10970 6.6795 -
549.0 10980 6.6117 0.1483
549.5 10990 6.7312 -
550.0 11000 6.5548 0.1437
550.5 11010 6.6704 -
551.0 11020 6.6254 0.1485
551.5 11030 6.7107 -
552.0 11040 6.5849 0.1489
552.5 11050 6.7148 -
553.0 11060 6.5732 0.1500
553.5 11070 6.7046 -
554.0 11080 6.5811 0.1499
554.5 11090 6.6878 -
555.0 11100 6.5975 0.1479
555.5 11110 6.6945 -
556.0 11120 6.5861 0.1443
556.5 11130 6.6961 -
557.0 11140 6.5791 0.1470
557.5 11150 6.679 -
558.0 11160 6.5945 0.1473
558.5 11170 6.7091 -
559.0 11180 6.5679 0.1507
559.5 11190 6.7118 -
560.0 11200 6.5731 0.1476
560.5 11210 6.722 -
561.0 11220 6.5608 0.1471
561.5 11230 6.709 -
562.0 11240 6.5806 0.1440
562.5 11250 6.7033 -
563.0 11260 6.5795 0.1482
563.5 11270 6.6975 -
564.0 11280 6.5742 0.1489
564.5 11290 6.699 -
565.0 11300 6.591 0.1489
565.5 11310 6.6799 -
566.0 11320 6.6002 0.1464
566.5 11330 6.6983 -
567.0 11340 6.7125 0.1485
567.5 11350 6.6615 -
568.0 11360 6.6091 0.1471
568.5 11370 6.6907 -
569.0 11380 6.5875 0.1449
569.5 11390 6.6804 -
570.0 11400 6.5862 0.1480
570.5 11410 6.6832 -
571.0 11420 6.5936 0.1451
571.5 11430 6.6823 -
572.0 11440 6.5972 0.1477
572.5 11450 6.7185 -
573.0 11460 6.6242 0.1468
573.5 11470 6.6696 -
574.0 11480 6.6016 0.1438
574.5 11490 6.6707 -
575.0 11500 6.6257 0.1455
575.5 11510 6.707 -
576.0 11520 6.5799 0.1460
576.5 11530 6.6984 -
577.0 11540 6.574 0.1446
577.5 11550 6.6827 -
578.0 11560 6.5875 0.1461
578.5 11570 6.727 -
579.0 11580 6.5571 0.1468
579.5 11590 6.6693 -
580.0 11600 6.6077 0.1453
580.5 11610 6.7235 -
581.0 11620 6.5563 0.1471
581.5 11630 6.6809 -
582.0 11640 6.5967 0.1456
582.5 11650 6.6828 -
583.0 11660 6.6012 0.1479
583.5 11670 6.7034 -
584.0 11680 6.5616 0.1460
584.5 11690 6.6626 -
585.0 11700 6.6065 0.1445
585.5 11710 6.6828 -
586.0 11720 6.5918 0.1438
586.5 11730 6.6981 -
587.0 11740 6.5662 0.1498
587.5 11750 6.6795 -
588.0 11760 6.5847 0.1459
588.5 11770 6.6977 -
589.0 11780 6.575 0.1481
589.5 11790 6.7086 -
590.0 11800 6.5627 0.1512
590.5 11810 6.6708 -
591.0 11820 6.6071 0.1453
591.5 11830 6.6932 -
592.0 11840 6.5713 0.1482
592.5 11850 6.7096 -
593.0 11860 6.5382 0.1453
593.5 11870 6.7076 -
594.0 11880 6.5386 0.1452
594.5 11890 6.6907 -
595.0 11900 6.5794 0.1445
595.5 11910 6.6943 -
596.0 11920 6.5724 0.1460
596.5 11930 6.6523 -
597.0 11940 6.6126 0.1469
597.5 11950 6.6787 -
598.0 11960 6.5811 0.1469
598.5 11970 6.6895 -
599.0 11980 6.5768 0.1463
599.5 11990 6.6718 -
600.0 12000 6.5975 0.1472
600.5 12010 6.6654 -
601.0 12020 6.6118 0.1459
601.5 12030 6.6852 -
602.0 12040 6.5742 0.1459
602.5 12050 6.6499 -
603.0 12060 6.601 0.1465
603.5 12070 6.6705 -
604.0 12080 6.5904 0.1473
604.5 12090 6.6773 -
605.0 12100 6.5805 0.1453
605.5 12110 6.6745 -
606.0 12120 6.5847 0.1464
606.5 12130 6.6557 -
607.0 12140 6.5884 0.1450
607.5 12150 6.6657 -
608.0 12160 6.6027 0.1438
608.5 12170 6.6931 -
609.0 12180 6.5615 0.1456
609.5 12190 6.7042 -
610.0 12200 6.5525 0.1464
610.5 12210 6.6881 -
611.0 12220 6.5855 0.1455
611.5 12230 6.6567 -
612.0 12240 6.591 0.1474
612.5 12250 6.6989 -
613.0 12260 6.5573 0.1478
613.5 12270 6.6519 -
614.0 12280 6.5985 0.1476
614.5 12290 6.6812 -
615.0 12300 6.5728 0.1460
615.5 12310 6.6779 -
616.0 12320 6.583 0.1466
616.5 12330 6.7174 -
617.0 12340 6.5341 0.1458
617.5 12350 6.6824 -
618.0 12360 6.5732 0.1430
618.5 12370 6.6737 -
619.0 12380 6.5822 0.1463
619.5 12390 6.6828 -
620.0 12400 6.5689 0.1470
620.5 12410 6.6592 -
621.0 12420 6.5871 0.1455
621.5 12430 6.657 -
622.0 12440 6.6003 0.1459
622.5 12450 6.6784 -
623.0 12460 6.5811 0.1459
623.5 12470 6.6824 -
624.0 12480 6.5726 0.1466
624.5 12490 6.7094 -
625.0 12500 6.5504 0.1454
625.5 12510 6.6935 -
626.0 12520 6.569 0.1471
626.5 12530 6.6936 -
627.0 12540 6.6079 0.1449
627.5 12550 6.6867 -
628.0 12560 6.57 0.1441
628.5 12570 6.6767 -
629.0 12580 6.5819 0.1455
629.5 12590 6.6822 -
630.0 12600 6.5756 0.1446
630.5 12610 6.66 -
631.0 12620 6.5954 0.1462
631.5 12630 6.6817 -
632.0 12640 6.5746 0.1469
632.5 12650 6.6672 -
633.0 12660 6.5809 0.1451
633.5 12670 6.6819 -
634.0 12680 6.5751 0.1457
634.5 12690 6.7037 -
635.0 12700 6.5656 0.1459
635.5 12710 6.6631 -
636.0 12720 6.5957 0.1453
636.5 12730 6.6873 -
637.0 12740 6.5726 0.1466
637.5 12750 6.6958 -
638.0 12760 11.3431 0.3098
638.5 12770 7.9992 -
639.0 12780 6.5799 0.1462
639.5 12790 6.7119 -
640.0 12800 6.5709 0.1457
640.5 12810 6.7105 -
641.0 12820 6.5545 0.1472
641.5 12830 6.6939 -
642.0 12840 6.5557 0.1458
642.5 12850 6.7018 -
643.0 12860 6.5475 0.1457
643.5 12870 6.6669 -
644.0 12880 6.5761 0.1467
644.5 12890 6.7066 -
645.0 12900 6.5379 0.1454
645.5 12910 6.6846 -
646.0 12920 6.5517 0.1463
646.5 12930 6.6616 -
647.0 12940 6.5936 0.1437
647.5 12950 6.6774 -
648.0 12960 6.5754 0.1450
648.5 12970 6.6653 -
649.0 12980 6.9099 0.1454
649.5 12990 6.6748 -
650.0 13000 6.5733 0.1462
650.5 13010 6.7764 -
651.0 13020 6.579 0.1443
651.5 13030 6.6853 -
652.0 13040 6.5561 0.1450
652.5 13050 6.6879 -
653.0 13060 6.5595 0.1481
653.5 13070 6.66 -
654.0 13080 6.5827 0.1462
654.5 13090 6.6524 -
655.0 13100 6.5838 0.1446
655.5 13110 6.6775 -
656.0 13120 6.5745 0.1463
656.5 13130 6.6826 -
657.0 13140 6.5634 0.1455
657.5 13150 6.6593 -
658.0 13160 6.5875 0.1428
658.5 13170 6.6798 -
659.0 13180 6.5596 0.1461
659.5 13190 6.6705 -
660.0 13200 6.5717 0.1474
660.5 13210 6.6792 -
661.0 13220 6.5554 0.1471
661.5 13230 6.6894 -
662.0 13240 6.5471 0.1467
662.5 13250 6.6685 -
663.0 13260 6.5619 0.1465
663.5 13270 6.6575 -
664.0 13280 6.5741 0.1465
664.5 13290 6.6654 -
665.0 13300 6.5771 0.1460
665.5 13310 6.6567 -
666.0 13320 6.5812 0.1459
666.5 13330 6.6716 -
667.0 13340 6.5656 0.1469
667.5 13350 6.6684 -
668.0 13360 6.5608 0.1470
668.5 13370 6.6995 -
669.0 13380 6.5397 0.1477
669.5 13390 6.7034 -
670.0 13400 6.5287 0.1458
670.5 13410 6.683 -
671.0 13420 6.5397 0.1440
671.5 13430 6.6777 -
672.0 13440 6.5507 0.1449
672.5 13450 6.6696 -
673.0 13460 6.5659 0.1447
673.5 13470 6.6915 -
674.0 13480 6.5577 0.1441
674.5 13490 6.6716 -
675.0 13500 6.5707 0.1424
675.5 13510 6.6356 -
676.0 13520 6.5966 0.1456
676.5 13530 6.6459 -
677.0 13540 6.5882 0.1443
677.5 13550 6.6795 -
678.0 13560 6.5523 0.1448
678.5 13570 6.6774 -
679.0 13580 6.5772 0.1446
679.5 13590 6.6561 -
680.0 13600 6.5954 0.1463
680.5 13610 6.6676 -
681.0 13620 6.5838 0.1426
681.5 13630 6.6524 -
682.0 13640 6.6027 0.1440
682.5 13650 6.6406 -
683.0 13660 6.5893 0.1441
683.5 13670 6.6801 -
684.0 13680 6.5553 0.1438
684.5 13690 6.6953 -
685.0 13700 6.5378 0.1432
685.5 13710 6.6358 -
686.0 13720 6.5921 0.1424
686.5 13730 6.6283 -
687.0 13740 6.6036 0.1438
687.5 13750 6.6911 -
688.0 13760 6.533 0.1448
688.5 13770 6.6666 -
689.0 13780 6.5773 0.1436
689.5 13790 6.6876 -
690.0 13800 6.5465 0.1468
690.5 13810 6.6799 -
691.0 13820 6.5426 0.1457
691.5 13830 6.6781 -
692.0 13840 6.557 0.1429
692.5 13850 6.6834 -
693.0 13860 6.5867 0.1432
693.5 13870 6.6634 -
694.0 13880 6.5606 0.1440
694.5 13890 6.6622 -
695.0 13900 6.5681 0.1451
695.5 13910 6.6658 -
696.0 13920 6.5753 0.1464
696.5 13930 6.6881 -
697.0 13940 6.5463 0.1452
697.5 13950 12.7672 -
698.0 13960 10.8294 0.1612
698.5 13970 6.8452 -
699.0 13980 6.5374 0.1438
699.5 13990 8.3092 -
700.0 14000 6.5571 0.1448
700.5 14010 6.6651 -
701.0 14020 6.575 0.1461
701.5 14030 6.6649 -
702.0 14040 6.5575 0.1450
702.5 14050 6.6309 -
703.0 14060 6.5939 0.1431
703.5 14070 6.6518 -
704.0 14080 6.5686 0.1464
704.5 14090 6.6488 -
705.0 14100 6.5655 0.1442
705.5 14110 6.663 -
706.0 14120 6.5748 0.1436
706.5 14130 6.656 -
707.0 14140 6.5797 0.1447
707.5 14150 6.6593 -
708.0 14160 6.5629 0.1440
708.5 14170 6.6657 -
709.0 14180 6.5649 0.1449
709.5 14190 6.66 -
710.0 14200 6.5596 0.1433
710.5 14210 6.6974 -
711.0 14220 6.5238 0.1446
711.5 14230 6.6807 -
712.0 14240 6.5476 0.1466
712.5 14250 6.659 -
713.0 14260 6.5697 0.1443
713.5 14270 6.647 -
714.0 14280 6.5651 0.1447
714.5 14290 6.6566 -
715.0 14300 6.5605 0.1437
715.5 14310 6.6619 -
716.0 14320 6.5634 0.1440
716.5 14330 6.6698 -
717.0 14340 6.5441 0.1451
717.5 14350 6.6644 -
718.0 14360 6.5716 0.1430
718.5 14370 6.6672 -
719.0 14380 6.5471 0.1424
719.5 14390 6.6524 -
720.0 14400 6.5837 0.1441
720.5 14410 6.6513 -
721.0 14420 6.561 0.1429
721.5 14430 6.6943 -
722.0 14440 6.5128 0.1441
722.5 14450 6.6807 -
723.0 14460 6.5473 0.1473
723.5 14470 6.6662 -
724.0 14480 6.5582 0.1458
724.5 14490 6.6925 -
725.0 14500 6.5249 0.1427
725.5 14510 6.6631 -
726.0 14520 6.5597 0.1441
726.5 14530 6.6896 -
727.0 14540 6.5391 0.1454
727.5 14550 6.6651 -
728.0 14560 6.5545 0.1448
728.5 14570 6.6658 -
729.0 14580 6.5529 0.1458
729.5 14590 6.6439 -
730.0 14600 6.5779 0.1443
730.5 14610 6.6313 -
731.0 14620 6.5934 0.1420
731.5 14630 6.6512 -
732.0 14640 6.5742 0.1443
732.5 14650 6.6418 -
733.0 14660 6.5853 0.1431
733.5 14670 6.6901 -
734.0 14680 6.5241 0.1466
734.5 14690 6.6731 -
735.0 14700 6.5459 0.1455
735.5 14710 6.7049 -
736.0 14720 6.5131 0.1462
736.5 14730 6.644 -
737.0 14740 6.5731 0.1451
737.5 14750 6.6674 -
738.0 14760 6.5455 0.1444
738.5 14770 6.6567 -
739.0 14780 6.5518 0.1442
739.5 14790 6.6716 -
740.0 14800 6.5465 0.1433
740.5 14810 6.6584 -
741.0 14820 6.5519 0.1447
741.5 14830 6.6817 -
742.0 14840 6.534 0.1430
742.5 14850 6.7061 -
743.0 14860 6.521 0.1454
743.5 14870 6.6666 -
744.0 14880 6.5529 0.1462
744.5 14890 6.6296 -
745.0 14900 6.5917 0.1460
745.5 14910 6.6856 -
746.0 14920 6.5269 0.1440
746.5 14930 6.6686 -
747.0 14940 6.5495 0.1444
747.5 14950 6.6778 -
748.0 14960 6.5327 0.1434
748.5 14970 6.6864 -
749.0 14980 6.5316 0.1446
749.5 14990 6.6904 -
750.0 15000 6.5302 0.1430
750.5 15010 6.8044 -
751.0 15020 6.581 0.1438
751.5 15030 6.6627 -
752.0 15040 6.5489 0.1432
752.5 15050 6.6396 -
753.0 15060 6.5832 0.1434
753.5 15070 6.8091 -
754.0 15080 6.5277 0.1450
754.5 15090 6.6641 -
755.0 15100 6.5506 0.1447
755.5 15110 6.6736 -
756.0 15120 6.5341 0.1430
756.5 15130 6.6589 -
757.0 15140 6.5513 0.1433
757.5 15150 6.6572 -
758.0 15160 6.5595 0.1425
758.5 15170 6.6319 -
759.0 15180 6.5836 0.1431
759.5 15190 6.6607 -
760.0 15200 6.547 0.1449
760.5 15210 6.656 -
761.0 15220 6.5529 0.1441
761.5 15230 6.6691 -
762.0 15240 6.5524 0.1433
762.5 15250 6.7125 -
763.0 15260 6.5451 0.1429
763.5 15270 6.652 -
764.0 15280 6.5616 0.1443
764.5 15290 6.6663 -
765.0 15300 6.5495 0.1434
765.5 15310 6.6545 -
766.0 15320 6.5649 0.1452
766.5 15330 6.6684 -
767.0 15340 6.5456 0.1438
767.5 15350 6.6523 -
768.0 15360 6.5558 0.1454
768.5 15370 6.6895 -
769.0 15380 6.5141 0.1439
769.5 15390 6.6657 -
770.0 15400 6.5362 0.1435
770.5 15410 6.6618 -
771.0 15420 6.5537 0.1449
771.5 15430 6.6565 -
772.0 15440 6.5443 0.1424
772.5 15450 6.6704 -
773.0 15460 6.5375 0.1433
773.5 15470 6.6683 -
774.0 15480 6.5348 0.1442
774.5 15490 6.6465 -
775.0 15500 6.5659 0.1452
775.5 15510 6.6639 -
776.0 15520 6.551 0.1459
776.5 15530 6.6734 -
777.0 15540 6.5267 0.1456
777.5 15550 6.6135 -
778.0 15560 6.5871 0.1440
778.5 15570 6.6378 -
779.0 15580 6.5688 0.1442
779.5 15590 6.6569 -
780.0 15600 6.5458 0.1453
780.5 15610 6.6345 -
781.0 15620 6.5786 0.1449
781.5 15630 6.6464 -
782.0 15640 6.5634 0.1445
782.5 15650 6.634 -
783.0 15660 6.578 0.1450
783.5 15670 6.687 -
784.0 15680 6.5157 0.1435
784.5 15690 6.6439 -
785.0 15700 6.5604 0.1439
785.5 15710 6.6435 -
786.0 15720 6.5671 0.1434
786.5 15730 6.6578 -
787.0 15740 6.5501 0.1451
787.5 15750 6.6789 -
788.0 15760 6.5272 0.1425
788.5 15770 6.669 -
789.0 15780 6.5265 0.1421
789.5 15790 6.6281 -
790.0 15800 6.5725 0.1430
790.5 15810 6.6691 -
791.0 15820 6.5235 0.1441
791.5 15830 6.6561 -
792.0 15840 6.5512 0.1443
792.5 15850 6.6797 -
793.0 15860 6.5573 0.1441
793.5 15870 6.6629 -
794.0 15880 6.5444 0.1447
794.5 15890 6.6825 -
795.0 15900 6.5179 0.1446
795.5 15910 6.6441 -
796.0 15920 6.556 0.1421
796.5 15930 6.6811 -
797.0 15940 6.5166 0.1426
797.5 15950 6.6821 -
798.0 15960 6.5063 0.1427
798.5 15970 6.6407 -
799.0 15980 6.5669 0.1443
799.5 15990 6.6299 -
800.0 16000 6.5664 0.1440
800.5 16010 6.6639 -
801.0 16020 6.5215 0.1434
801.5 16030 6.6534 -
802.0 16040 6.5476 0.1424
802.5 16050 6.6389 -
803.0 16060 6.5503 0.1435
803.5 16070 6.6531 -
804.0 16080 6.5362 0.1434
804.5 16090 6.6839 -
805.0 16100 6.5139 0.1436
805.5 16110 6.6592 -
806.0 16120 6.5405 0.1436
806.5 16130 6.6591 -
807.0 16140 6.5394 0.1421
807.5 16150 6.6394 -
808.0 16160 6.5595 0.1423
808.5 16170 6.6978 -
809.0 16180 6.4986 0.1427
809.5 16190 6.6304 -
810.0 16200 6.5665 0.1427
810.5 16210 6.6807 -
811.0 16220 6.5104 0.1435
811.5 16230 6.6378 -
812.0 16240 6.5677 0.1440
812.5 16250 6.6478 -
813.0 16260 6.5496 0.1428
813.5 16270 6.6393 -
814.0 16280 6.5475 0.1427
814.5 16290 6.6401 -
815.0 16300 6.5514 0.1417
815.5 16310 6.6703 -
816.0 16320 6.5282 0.1410
816.5 16330 6.6748 -
817.0 16340 6.5283 0.1410
817.5 16350 6.6735 -
818.0 16360 6.509 0.1409
818.5 16370 6.661 -
819.0 16380 6.5215 0.1409
819.5 16390 6.6709 -
820.0 16400 6.5321 0.1426
820.5 16410 6.6592 -
821.0 16420 6.5272 0.1441
821.5 16430 6.659 -
822.0 16440 6.5289 0.1453
822.5 16450 6.6696 -
823.0 16460 6.518 0.1437
823.5 16470 6.655 -
824.0 16480 6.5406 0.1426
824.5 16490 6.6463 -
825.0 16500 6.5442 0.1447
825.5 16510 6.6668 -
826.0 16520 6.5251 0.1427
826.5 16530 6.6405 -
827.0 16540 6.5525 0.1415
827.5 16550 6.6626 -
828.0 16560 6.5362 0.1426
828.5 16570 6.6508 -
829.0 16580 6.551 0.1429
829.5 16590 6.6679 -
830.0 16600 6.5182 0.1421
830.5 16610 6.6611 -
831.0 16620 6.5295 0.1453
831.5 16630 6.6787 -
832.0 16640 6.497 0.1471
832.5 16650 6.6752 -
833.0 16660 6.511 0.1450
833.5 16670 6.6477 -
834.0 16680 6.5321 0.1446
834.5 16690 6.6627 -
835.0 16700 6.5382 0.1431
835.5 16710 6.6735 -
836.0 16720 6.5133 0.1445
836.5 16730 6.6537 -
837.0 16740 6.5412 0.1431
837.5 16750 6.6529 -
838.0 16760 6.5401 0.1438
838.5 16770 6.6698 -
839.0 16780 6.5129 0.1445
839.5 16790 6.6717 -
840.0 16800 6.5141 0.1438
840.5 16810 6.6309 -
841.0 16820 6.5632 0.1438
841.5 16830 6.6303 -
842.0 16840 6.554 0.1438
842.5 16850 6.6773 -
843.0 16860 6.5129 0.1442
843.5 16870 6.6594 -
844.0 16880 6.5308 0.1439
844.5 16890 6.6639 -
845.0 16900 6.529 0.1436
845.5 16910 6.6761 -
846.0 16920 6.5197 0.1442
846.5 16930 6.6684 -
847.0 16940 6.5273 0.1444
847.5 16950 6.6763 -
848.0 16960 6.5091 0.1443
848.5 16970 6.6697 -
849.0 16980 6.5173 0.1434
849.5 16990 6.6658 -
850.0 17000 6.5187 0.1424
850.5 17010 6.6588 -
851.0 17020 6.5302 0.1427
851.5 17030 6.6554 -
852.0 17040 6.5306 0.1424
852.5 17050 6.6336 -
853.0 17060 6.5413 0.1416
853.5 17070 6.6626 -
854.0 17080 6.5294 0.1423
854.5 17090 6.6293 -
855.0 17100 6.5668 0.1437
855.5 17110 6.6439 -
856.0 17120 6.5443 0.1429
856.5 17130 6.6875 -
857.0 17140 6.4851 0.1424
857.5 17150 6.6642 -
858.0 17160 6.5196 0.1418
858.5 17170 6.6309 -
859.0 17180 6.5476 0.1437
859.5 17190 6.6677 -
860.0 17200 6.5073 0.2636
860.5 17210 6.8599 -
861.0 17220 6.5187 0.1419
861.5 17230 6.6443 -
862.0 17240 6.541 0.1431
862.5 17250 6.6552 -
863.0 17260 6.5281 0.1434
863.5 17270 6.6496 -
864.0 17280 6.5312 0.1423
864.5 17290 6.6408 -
865.0 17300 6.5403 0.1431
865.5 17310 6.6584 -
866.0 17320 6.5335 0.1436
866.5 17330 6.6392 -
867.0 17340 6.5383 0.1439
867.5 17350 6.6501 -
868.0 17360 6.5219 0.1434
868.5 17370 6.6763 -
869.0 17380 6.501 0.1431
869.5 17390 6.6624 -
870.0 17400 6.5163 0.1424
870.5 17410 6.6634 -
871.0 17420 6.5202 0.1436
871.5 17430 6.6531 -
872.0 17440 6.5275 0.1431
872.5 17450 6.6373 -
873.0 17460 6.533 0.1423
873.5 17470 6.6574 -
874.0 17480 6.5241 0.1423
874.5 17490 6.6622 -
875.0 17500 6.5123 0.1426
875.5 17510 6.6495 -
876.0 17520 6.5383 0.1425
876.5 17530 6.6533 -
877.0 17540 6.5273 0.1422
877.5 17550 6.6395 -
878.0 17560 6.5446 0.1426
878.5 17570 6.6594 -
879.0 17580 6.5163 0.1421
879.5 17590 6.6244 -
880.0 17600 6.5578 0.1424
880.5 17610 6.6453 -
881.0 17620 6.5274 0.1425
881.5 17630 6.628 -
882.0 17640 6.561 0.1426
882.5 17650 6.6507 -
883.0 17660 6.5207 0.1435
883.5 17670 6.6691 -
884.0 17680 6.5087 0.1426
884.5 17690 6.6468 -
885.0 17700 6.5289 0.1424
885.5 17710 6.6479 -
886.0 17720 6.549 0.1422
886.5 17730 6.6367 -
887.0 17740 6.5527 0.1425
887.5 17750 6.6397 -
888.0 17760 6.542 0.1420
888.5 17770 6.6435 -
889.0 17780 6.5309 0.1424
889.5 17790 6.6549 -
890.0 17800 6.5316 0.1412
890.5 17810 6.6399 -
891.0 17820 6.5309 0.1416
891.5 17830 6.6721 -
892.0 17840 6.5116 0.1405
892.5 17850 6.6583 -
893.0 17860 6.5089 0.1404
893.5 17870 6.6543 -
894.0 17880 6.5136 0.1412
894.5 17890 6.6376 -
895.0 17900 6.5464 0.1426
895.5 17910 6.6764 -
896.0 17920 6.5045 0.1428
896.5 17930 6.6343 -
897.0 17940 6.5442 0.1423
897.5 17950 6.6408 -
898.0 17960 6.5325 0.1426
898.5 17970 6.6527 -
899.0 17980 6.5279 0.1425
899.5 17990 6.655 -
900.0 18000 6.5222 0.1423
900.5 18010 6.6627 -
901.0 18020 6.5083 0.1423
901.5 18030 6.6497 -
902.0 18040 6.5269 0.1426
902.5 18050 6.6414 -
903.0 18060 6.5395 0.1422
903.5 18070 6.6467 -
904.0 18080 6.5236 0.1416
904.5 18090 6.6719 -
905.0 18100 6.5033 0.1420
905.5 18110 6.6444 -
906.0 18120 6.5203 0.1417
906.5 18130 6.6427 -
907.0 18140 6.5278 0.1420
907.5 18150 6.6558 -
908.0 18160 6.5041 0.1427
908.5 18170 6.6468 -
909.0 18180 6.5235 0.1419
909.5 18190 6.6378 -
910.0 18200 6.5203 0.1420
910.5 18210 6.6505 -
911.0 18220 6.5196 0.1417
911.5 18230 6.6431 -
912.0 18240 6.5286 0.1416
912.5 18250 6.6346 -
913.0 18260 6.5313 0.1417
913.5 18270 6.6516 -
914.0 18280 6.5176 0.1427
914.5 18290 6.634 -
915.0 18300 6.5408 0.1432
915.5 18310 6.6562 -
916.0 18320 6.5153 0.1426
916.5 18330 6.6703 -
917.0 18340 6.4909 0.1420
917.5 18350 6.6384 -
918.0 18360 6.5318 0.1424
918.5 18370 6.6547 -
919.0 18380 6.5159 0.1425
919.5 18390 6.6552 -
920.0 18400 6.5146 0.1432
920.5 18410 6.6266 -
921.0 18420 6.5488 0.1434
921.5 18430 6.6748 -
922.0 18440 6.488 0.1424
922.5 18450 6.6401 -
923.0 18460 6.5877 0.1423
923.5 18470 6.6176 -
924.0 18480 6.5658 0.1419
924.5 18490 6.6554 -
925.0 18500 6.5092 0.1418
925.5 18510 6.6467 -
926.0 18520 6.5175 0.1417
926.5 18530 6.6331 -
927.0 18540 6.5243 0.1429
927.5 18550 6.6506 -
928.0 18560 6.5224 0.1424
928.5 18570 6.629 -
929.0 18580 6.5414 0.1419
929.5 18590 6.64 -
930.0 18600 6.524 0.1416
930.5 18610 6.6545 -
931.0 18620 6.5045 0.1412
931.5 18630 6.6301 -
932.0 18640 6.5334 0.1418
932.5 18650 6.6212 -
933.0 18660 6.5498 0.1421
933.5 18670 6.6474 -
934.0 18680 6.5237 0.1420
934.5 18690 6.6375 -
935.0 18700 6.5411 0.1420
935.5 18710 6.6381 -
936.0 18720 6.5304 0.1421
936.5 18730 6.6373 -
937.0 18740 6.5234 0.1418
937.5 18750 6.6376 -
938.0 18760 6.5256 0.1418
938.5 18770 6.6576 -
939.0 18780 6.5094 0.1421
939.5 18790 6.677 -
940.0 18800 6.4781 0.1425
940.5 18810 6.6221 -
941.0 18820 6.5426 0.1422
941.5 18830 6.6554 -
942.0 18840 6.5103 0.1414
942.5 18850 6.6403 -
943.0 18860 6.5243 0.1419
943.5 18870 6.6798 -
944.0 18880 6.4754 0.1421
944.5 18890 6.628 -
945.0 18900 6.5264 0.1420
945.5 18910 6.6421 -
946.0 18920 6.5289 0.1423
946.5 18930 6.655 -
947.0 18940 6.499 0.1423
947.5 18950 6.5927 -
948.0 18960 6.5678 0.1417
948.5 18970 6.6396 -
949.0 18980 6.521 0.1416
949.5 18990 6.6451 -
950.0 19000 6.5195 0.1417
950.5 19010 6.6447 -
951.0 19020 6.5005 0.1419
951.5 19030 6.6581 -
952.0 19040 6.4967 0.1422
952.5 19050 6.6417 -
953.0 19060 6.5209 0.1421
953.5 19070 6.6699 -
954.0 19080 6.4906 0.1419
954.5 19090 6.6265 -
955.0 19100 6.536 0.1416
955.5 19110 6.6597 -
956.0 19120 6.5016 0.1416
956.5 19130 6.6171 -
957.0 19140 6.5512 0.1421
957.5 19150 6.6283 -
958.0 19160 6.5425 0.1424
958.5 19170 6.6215 -
959.0 19180 6.5428 0.1423
959.5 19190 6.6224 -
960.0 19200 6.5303 0.1419
960.5 19210 6.6533 -
961.0 19220 6.5168 0.1418
961.5 19230 6.6242 -
962.0 19240 6.5355 0.1419
962.5 19250 6.6604 -
963.0 19260 6.5008 0.1422
963.5 19270 6.6302 -
964.0 19280 6.5365 0.1421
964.5 19290 6.6376 -
965.0 19300 6.5251 0.1422
965.5 19310 6.6578 -
966.0 19320 6.5047 0.1423
966.5 19330 6.6523 -
967.0 19340 6.5042 0.1421
967.5 19350 6.651 -
968.0 19360 6.5131 0.1421
968.5 19370 6.6427 -
969.0 19380 6.5068 0.1420
969.5 19390 6.6183 -
970.0 19400 6.5354 0.1422
970.5 19410 6.6318 -
971.0 19420 6.5234 0.1418
971.5 19430 6.6334 -
972.0 19440 6.5221 0.1419
972.5 19450 6.6977 -
973.0 19460 6.4547 0.1418
973.5 19470 6.6555 -
974.0 19480 6.5042 0.1417
974.5 19490 6.6425 -
975.0 19500 6.5108 0.1417
975.5 19510 6.6746 -
976.0 19520 6.4847 0.1416
976.5 19530 6.6338 -
977.0 19540 6.5262 0.1418
977.5 19550 6.6403 -
978.0 19560 6.5154 0.1419
978.5 19570 6.6241 -
979.0 19580 6.5296 0.1419
979.5 19590 6.6129 -
980.0 19600 6.5483 0.1419
980.5 19610 6.6524 -
981.0 19620 6.5031 0.1418
981.5 19630 6.671 -
982.0 19640 6.4815 0.1420
982.5 19650 6.6277 -
983.0 19660 6.5349 0.1419
983.5 19670 6.6249 -
984.0 19680 6.5264 0.1420
984.5 19690 6.6389 -
985.0 19700 6.5089 0.1419
985.5 19710 6.6438 -
986.0 19720 6.5033 0.1419
986.5 19730 6.6322 -
987.0 19740 6.5293 0.1419
987.5 19750 6.6392 -
988.0 19760 6.5203 0.1418
988.5 19770 6.6184 -
989.0 19780 6.5453 0.1418
989.5 19790 6.6453 -
990.0 19800 6.5069 0.1420
990.5 19810 6.6452 -
991.0 19820 6.513 0.1420
991.5 19830 6.6694 -
992.0 19840 6.4836 0.1420
992.5 19850 6.625 -
993.0 19860 6.5284 0.1419
993.5 19870 6.6546 -
994.0 19880 6.502 0.1419
994.5 19890 6.628 -
995.0 19900 6.5196 0.1419
995.5 19910 6.6541 -
996.0 19920 6.497 0.1419
996.5 19930 6.6336 -
997.0 19940 6.5223 0.1419
997.5 19950 6.6349 -
998.0 19960 6.5133 0.1420
998.5 19970 6.6675 -
999.0 19980 6.482 0.1420
999.5 19990 6.6569 -
1000.0 20000 6.491 0.1419

Framework Versions

  • Python: 3.10.15
  • Sentence Transformers: 3.2.1
  • Transformers: 4.45.2
  • PyTorch: 2.4.0+cu121
  • Accelerate: 1.1.1
  • Datasets: 3.0.1
  • Tokenizers: 0.20.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for redXen/droso_finetune

Finetuned
(8)
this model