efficient-vit-CEMEDE-og

This model is a fine-tuned version of timm/efficientvit_b0.r224_in1k on the cemede dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7816
  • Accuracy: 0.7913
  • F1: 0.7468

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.3755 0.0840 100 2.1189 0.3766 0.2053
0.8418 0.1679 200 2.2810 0.3067 0.1753
0.7683 0.2519 300 1.8360 0.4570 0.3601
0.6862 0.3359 400 1.1806 0.6685 0.5573
0.4868 0.4198 500 1.0167 0.6855 0.6038
0.3877 0.5038 600 1.0808 0.6763 0.5733
0.4511 0.5877 700 1.2495 0.6708 0.5675
0.2773 0.6717 800 0.9806 0.7260 0.5884
0.3842 0.7557 900 0.9603 0.6961 0.5869
0.5853 0.8396 1000 1.1610 0.7113 0.6741
0.375 0.9236 1100 1.0845 0.6874 0.6517
0.4001 1.0076 1200 0.7816 0.7913 0.7468
0.2953 1.0915 1300 0.9925 0.7398 0.6851
0.1258 1.1755 1400 0.8799 0.7834 0.7269
0.2446 1.2594 1500 0.8710 0.7646 0.7369
0.2414 1.3434 1600 0.9198 0.7664 0.7199
0.1738 1.4274 1700 0.8230 0.7972 0.7353
0.2122 1.5113 1800 0.9513 0.7664 0.7091
0.153 1.5953 1900 0.8115 0.7766 0.7432
0.159 1.6793 2000 0.9063 0.7940 0.7453
0.1874 1.7632 2100 0.9330 0.8014 0.7365
0.1999 1.8472 2200 0.8745 0.7692 0.6915

Framework versions

  • Transformers 4.55.4
  • Pytorch 2.6.0+cu124
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
57
Safetensors
Model size
2.17M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for redbioma/efficient-vit-CEMEDE-og

Finetuned
(4)
this model