swin-CEMEDE-og

This model is a fine-tuned version of microsoft/swin-base-simmim-window6-192 on the cemede dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8707
  • Accuracy: 0.8018
  • F1: 0.7127

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
2.2296 0.0840 100 2.1836 0.2570 0.0825
1.8921 0.1679 200 2.2063 0.3080 0.1300
1.682 0.2519 300 2.4050 0.3862 0.1449
1.8146 0.3359 400 1.9343 0.4253 0.2199
1.423 0.4198 500 1.9058 0.4579 0.2335
1.5637 0.5038 600 1.6756 0.5085 0.3331
1.0535 0.5877 700 1.4023 0.5641 0.3791
1.0955 0.6717 800 1.3086 0.6069 0.4426
0.8927 0.7557 900 1.2083 0.6377 0.5108
0.8035 0.8396 1000 1.3281 0.6340 0.4921
0.8517 0.9236 1100 1.2840 0.6492 0.5175
0.6035 1.0076 1200 1.2919 0.6446 0.5013
0.7727 1.0915 1300 1.0839 0.6878 0.5742
0.625 1.1755 1400 1.1132 0.7034 0.5552
0.554 1.2594 1500 1.2120 0.6492 0.5758
0.4117 1.3434 1600 1.1343 0.7030 0.5748
0.7557 1.4274 1700 1.1490 0.6975 0.5751
0.4841 1.5113 1800 0.9364 0.7756 0.6364
0.4899 1.5953 1900 1.1162 0.6929 0.5657
0.6598 1.6793 2000 0.9602 0.7402 0.6597
0.2826 1.7632 2100 1.2618 0.7044 0.6255
0.4785 1.8472 2200 1.0743 0.7269 0.6488
0.4427 1.9312 2300 0.8803 0.7641 0.6690
0.5305 2.0151 2400 0.8739 0.7830 0.6996
0.3814 2.0991 2500 0.9660 0.7789 0.6873
0.2273 2.1830 2600 1.0271 0.7789 0.7071
0.232 2.2670 2700 0.9957 0.7724 0.6961
0.2101 2.3510 2800 0.9729 0.7798 0.7196
0.4029 2.4349 2900 1.0296 0.7526 0.6911
0.2645 2.5189 3000 1.0878 0.7747 0.7058
0.3111 2.6029 3100 1.0745 0.7623 0.7072
0.1767 2.6868 3200 0.8820 0.7913 0.7424
0.167 2.7708 3300 0.8707 0.8018 0.7127
0.2523 2.8547 3400 1.0131 0.8046 0.7418
0.0786 2.9387 3500 1.0026 0.7807 0.7249
0.259 3.0227 3600 0.9817 0.7922 0.7109
0.3004 3.1066 3700 1.0838 0.7977 0.7341
0.1594 3.1906 3800 0.9184 0.8078 0.7323
0.1957 3.2746 3900 0.8777 0.8248 0.7255
0.1107 3.3585 4000 0.9186 0.8216 0.7360
0.1389 3.4425 4100 0.9996 0.8032 0.7358
0.1273 3.5264 4200 1.0062 0.8147 0.7604
0.2635 3.6104 4300 1.0976 0.8041 0.7406

Framework versions

  • Transformers 4.55.4
  • Pytorch 2.6.0+cu124
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
114
Safetensors
Model size
86.8M params
Tensor type
I64
·
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for redbioma/swin-CEMEDE-og

Finetuned
(3)
this model