YAML Metadata Warning: The pipeline tag "text2text-generation" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other

Model Card of research-backup/t5-small-tweetqa-qag-np

This model is fine-tuned version of t5-small for question & answer pair generation task on the lmqg/qag_tweetqa (dataset_name: default) via lmqg. This model is fine-tuned without a task prefix.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="en", model="research-backup/t5-small-tweetqa-qag-np")

# model prediction
question_answer_pairs = model.generate_qa("William Turner was an English painter who specialised in watercolour landscapes")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "research-backup/t5-small-tweetqa-qag-np")
output = pipe("Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")

Evaluation

Score Type Dataset
BERTScore 89.48 default lmqg/qag_tweetqa
Bleu_1 35.61 default lmqg/qag_tweetqa
Bleu_2 23.38 default lmqg/qag_tweetqa
Bleu_3 15.73 default lmqg/qag_tweetqa
Bleu_4 10.71 default lmqg/qag_tweetqa
METEOR 27.8 default lmqg/qag_tweetqa
MoverScore 60.53 default lmqg/qag_tweetqa
QAAlignedF1Score (BERTScore) 90.7 default lmqg/qag_tweetqa
QAAlignedF1Score (MoverScore) 62.94 default lmqg/qag_tweetqa
QAAlignedPrecision (BERTScore) 91.19 default lmqg/qag_tweetqa
QAAlignedPrecision (MoverScore) 64.1 default lmqg/qag_tweetqa
QAAlignedRecall (BERTScore) 90.23 default lmqg/qag_tweetqa
QAAlignedRecall (MoverScore) 61.9 default lmqg/qag_tweetqa
ROUGE_L 34.77 default lmqg/qag_tweetqa

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qag_tweetqa
  • dataset_name: default
  • input_types: ['paragraph']
  • output_types: ['questions_answers']
  • prefix_types: None
  • model: t5-small
  • max_length: 256
  • max_length_output: 128
  • epoch: 16
  • batch: 64
  • lr: 0.0001
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 1
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for research-backup/t5-small-tweetqa-qag-np

Finetunes
1 model

Dataset used to train research-backup/t5-small-tweetqa-qag-np

Evaluation results

  • BLEU4 (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    10.710
  • ROUGE-L (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    34.770
  • METEOR (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    27.800
  • BERTScore (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    89.480
  • MoverScore (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    60.530
  • QAAlignedF1Score-BERTScore (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    90.700
  • QAAlignedRecall-BERTScore (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    90.230
  • QAAlignedPrecision-BERTScore (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    91.190
  • QAAlignedF1Score-MoverScore (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    62.940
  • QAAlignedRecall-MoverScore (Question & Answer Generation) on lmqg/qag_tweetqa
    self-reported
    61.900