YAML Metadata
Warning:
The pipeline tag "text2text-generation" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other
Model Card of research-backup/t5-small-tweetqa-qag-np
This model is fine-tuned version of t5-small for question & answer pair generation task on the lmqg/qag_tweetqa (dataset_name: default) via lmqg
.
This model is fine-tuned without a task prefix.
Overview
- Language model: t5-small
- Language: en
- Training data: lmqg/qag_tweetqa (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With
lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="en", model="research-backup/t5-small-tweetqa-qag-np")
# model prediction
question_answer_pairs = model.generate_qa("William Turner was an English painter who specialised in watercolour landscapes")
- With
transformers
from transformers import pipeline
pipe = pipeline("text2text-generation", "research-backup/t5-small-tweetqa-qag-np")
output = pipe("Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")
Evaluation
- Metric (Question & Answer Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 89.48 | default | lmqg/qag_tweetqa |
Bleu_1 | 35.61 | default | lmqg/qag_tweetqa |
Bleu_2 | 23.38 | default | lmqg/qag_tweetqa |
Bleu_3 | 15.73 | default | lmqg/qag_tweetqa |
Bleu_4 | 10.71 | default | lmqg/qag_tweetqa |
METEOR | 27.8 | default | lmqg/qag_tweetqa |
MoverScore | 60.53 | default | lmqg/qag_tweetqa |
QAAlignedF1Score (BERTScore) | 90.7 | default | lmqg/qag_tweetqa |
QAAlignedF1Score (MoverScore) | 62.94 | default | lmqg/qag_tweetqa |
QAAlignedPrecision (BERTScore) | 91.19 | default | lmqg/qag_tweetqa |
QAAlignedPrecision (MoverScore) | 64.1 | default | lmqg/qag_tweetqa |
QAAlignedRecall (BERTScore) | 90.23 | default | lmqg/qag_tweetqa |
QAAlignedRecall (MoverScore) | 61.9 | default | lmqg/qag_tweetqa |
ROUGE_L | 34.77 | default | lmqg/qag_tweetqa |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qag_tweetqa
- dataset_name: default
- input_types: ['paragraph']
- output_types: ['questions_answers']
- prefix_types: None
- model: t5-small
- max_length: 256
- max_length_output: 128
- epoch: 16
- batch: 64
- lr: 0.0001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 1
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
- Downloads last month
- 3
Model tree for research-backup/t5-small-tweetqa-qag-np
Dataset used to train research-backup/t5-small-tweetqa-qag-np
Evaluation results
- BLEU4 (Question & Answer Generation) on lmqg/qag_tweetqaself-reported10.710
- ROUGE-L (Question & Answer Generation) on lmqg/qag_tweetqaself-reported34.770
- METEOR (Question & Answer Generation) on lmqg/qag_tweetqaself-reported27.800
- BERTScore (Question & Answer Generation) on lmqg/qag_tweetqaself-reported89.480
- MoverScore (Question & Answer Generation) on lmqg/qag_tweetqaself-reported60.530
- QAAlignedF1Score-BERTScore (Question & Answer Generation) on lmqg/qag_tweetqaself-reported90.700
- QAAlignedRecall-BERTScore (Question & Answer Generation) on lmqg/qag_tweetqaself-reported90.230
- QAAlignedPrecision-BERTScore (Question & Answer Generation) on lmqg/qag_tweetqaself-reported91.190
- QAAlignedF1Score-MoverScore (Question & Answer Generation) on lmqg/qag_tweetqaself-reported62.940
- QAAlignedRecall-MoverScore (Question & Answer Generation) on lmqg/qag_tweetqaself-reported61.900