|
--- |
|
license: apache-2.0 |
|
base_model: sentence-transformers/LaBSE |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: ternary_persian_sentiment_analysis |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ternary_persian_sentiment_analysis |
|
|
|
This model is a fine-tuned version of [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4914 |
|
- Accuracy: 0.8458 |
|
- F1 Score: 0.8459 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:| |
|
| 0.496 | 1.0 | 1394 | 0.4708 | 0.8192 | 0.8186 | |
|
| 0.4177 | 2.0 | 2788 | 0.4914 | 0.8458 | 0.8459 | |
|
| 0.3237 | 3.0 | 4182 | 0.5736 | 0.8354 | 0.8356 | |
|
| 0.2874 | 4.0 | 5576 | 0.7309 | 0.8216 | 0.8217 | |
|
| 0.2142 | 5.0 | 6970 | 0.9256 | 0.8184 | 0.8187 | |
|
| 0.1494 | 6.0 | 8364 | 1.0608 | 0.8200 | 0.8197 | |
|
| 0.1396 | 7.0 | 9758 | 1.0638 | 0.8257 | 0.8256 | |
|
| 0.0983 | 8.0 | 11152 | 1.2088 | 0.8200 | 0.8200 | |
|
| 0.0907 | 9.0 | 12546 | 1.3653 | 0.8079 | 0.8083 | |
|
| 0.0727 | 10.0 | 13940 | 1.3032 | 0.8305 | 0.8307 | |
|
| 0.0526 | 11.0 | 15334 | 1.4689 | 0.8184 | 0.8184 | |
|
| 0.0413 | 12.0 | 16728 | 1.4875 | 0.8224 | 0.8227 | |
|
| 0.0265 | 13.0 | 18122 | 1.6185 | 0.8241 | 0.8242 | |
|
| 0.0366 | 14.0 | 19516 | 1.7135 | 0.8168 | 0.8168 | |
|
| 0.0251 | 15.0 | 20910 | 1.6607 | 0.8249 | 0.8251 | |
|
| 0.0151 | 16.0 | 22304 | 1.7922 | 0.8111 | 0.8111 | |
|
| 0.0159 | 17.0 | 23698 | 1.7303 | 0.8200 | 0.8201 | |
|
| 0.0163 | 18.0 | 25092 | 1.7555 | 0.8232 | 0.8232 | |
|
| 0.0178 | 19.0 | 26486 | 1.7680 | 0.8232 | 0.8232 | |
|
| 0.0147 | 20.0 | 27880 | 1.7546 | 0.8216 | 0.8217 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|