phi-2-orange-v2 / README.md
rhysjones's picture
Update README.md
f408518 verified
metadata
license: mit
datasets:
  - Open-Orca/SlimOrca-Dedup
  - migtissera/Synthia-v1.3
  - LDJnr/Verified-Camel
  - LDJnr/Pure-Dove
  - LDJnr/Capybara
  - meta-math/MetaMathQA
  - Intel/orca_dpo_pairs
  - argilla/ultrafeedback-binarized-preferences-cleaned
widget:
  - example_title: Example interaction
    text: Why is the sky blue?
inference:
  parameters:
    do_sample: true
    temperature: 0.1
model-index:
  - name: phi-2-orange-v2
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 61.86
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rhysjones/phi-2-orange-v2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 76.32
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rhysjones/phi-2-orange-v2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 55.72
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rhysjones/phi-2-orange-v2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 54.84
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rhysjones/phi-2-orange-v2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 75.69
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rhysjones/phi-2-orange-v2
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 57.62
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rhysjones/phi-2-orange-v2
          name: Open LLM Leaderboard

Phi-2 Orange

Phi-2 Orange Version 2

A two-step finetune of Phi-2, with a bit more zest.

This is an improved version of the original Phi-2-Orange that uses an updated training process on the same datasets.

It also uses the latest updated model from Microsoft's Phi-2, making it directly usable within Hugging Face's Transformers library (without the need for trust remote code).

Prompt Format

Phi-2 Orange v2 uses ChatML as the prompt format.
(Update 12th March 2024: fixed eos_token issue)

It's recommended to always prompt with a system instruction (use whatever system prompt you like):

<|im_start|>system
You are a helpful assistant for Python which outputs in Markdown format.<|im_end|>
<|im_start|>user
Write a function to calculate the Fibonacci sequence<|im_end|>
<|im_start|>assistant

For example, if you find the model's output to be overly verbose, instruct it to be short and concise:

<|im_start|>system
You are a helpful assistant. Be short and direct in your answers.<|im_end|>
<|im_start|>user
Was Tom Hanks in the movie Forrest Gump? If so, who did he play and give details of the plot.<|im_end|>
<|im_start|>assistant

Evaluations

Open LLM Leaderboard Evaluation Results
Detailed results can be found here

Metric Value
Average 63.67
AI2 Reasoning Challenge (25-Shot) 61.86
HellaSwag (10-Shot) 76.32
MMLU (5-Shot) 55.72
TruthfulQA (0-shot) 54.84
Winogrande (5-shot) 75.69
GSM8k (5-shot) 57.62

YALL - Yet Another LLM Leaderboard
Evaluation from mlabonne's alternative LLM leaderboard:

Metric Value
Average 49.64
AGIEval 34.55
GPT4All 70.96
TruthfulQA 54.87
Bigbench 38.17

Limitations

This model shares the same limitations as the underlying Phi-2 model, details of which are found here.