YAML Metadata
		Warning:
	empty or missing yaml metadata in repo card
	(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
NanoChat Speedrun Model
This model was trained using the NanoChat speedrun script.
Model Details
- Architecture: d20 (561M parameters)
 - Training Pipeline: Pretraining โ Midtraining โ SFT
 - Tokenizer: Custom BPE with vocab size 65,536
 - Training Time: ~4 hours on 8xH100 GPUs
 
Usage
# Load the model (example - adjust based on your setup)
import torch
model = torch.load('model.pth', map_location='cpu')
See nanochat repository for full usage instructions.
Training Report
nanochat training report
Generated: 2025-10-19 19:54:27
Environment
Git Information
- Branch: master
 - Commit: d6d86cb (dirty)
 - Message: update readme with a link to the CPU|MPS branch
 
Hardware
- Platform: Linux
 - CPUs: 240 cores (240 logical)
 - Memory: 1771.7 GB
 - GPUs: 8x NVIDIA A100-SXM4-80GB
 - GPU Memory: 634.0 GB total
 - CUDA Version: 12.8
 - Hourly Rate: $14.32/hour
 
Software
- Python: 3.10.12
 - PyTorch: 2.8.0+cu128
 
Bloat
- Characters: 357,831
 - Lines: 8,718
 - Files: 44
 - Tokens (approx): 89,457
 - Dependencies (uv.lock lines): 2,004
 
Run started: 2025-10-19 19:54:32
Tokenizer training
timestamp: 2025-10-19 19:56:03
- max_chars: 2,000,000,000
 - doc_cap: 10,000
 - vocab_size: 65,536
 - train_time: 71.4154
 - num_special_tokens: 9
 - token_bytes_min: 1
 - token_bytes_max: 32
 - token_bytes_mean: 6.9197
 - token_bytes_std: 2.8748
 
Tokenizer evaluation
timestamp: 2025-10-19 19:56:15
Comparison with GPT-2
| Text Type | Bytes | GPT-2 Tokens | GPT-2 Ratio | Ours Tokens | Ours Ratio | Relative Diff % | 
|---|---|---|---|---|---|---|
| news | 1819 | 404 | 4.50 | 375 | 4.85 | +7.2% | 
| korean | 893 | 745 | 1.20 | 712 | 1.25 | +4.4% | 
| code | 1259 | 576 | 2.19 | 492 | 2.56 | +14.6% | 
| math | 1834 | 936 | 1.96 | 966 | 1.90 | -3.2% | 
| science | 1112 | 260 | 4.28 | 228 | 4.88 | +12.3% | 
| fwe-train | 4208518 | 900364 | 4.67 | 856883 | 4.91 | +4.8% | 
| fwe-val | 4908443 | 1059062 | 4.63 | 1010352 | 4.86 | +4.6% | 
Comparison with GPT-4
| Text Type | Bytes | GPT-4 Tokens | GPT-4 Ratio | Ours Tokens | Ours Ratio | Relative Diff % | 
|---|---|---|---|---|---|---|
| news | 1819 | 387 | 4.70 | 375 | 4.85 | +3.1% | 
| korean | 893 | 364 | 2.45 | 712 | 1.25 | -95.6% | 
| code | 1259 | 309 | 4.07 | 492 | 2.56 | -59.2% | 
| math | 1834 | 832 | 2.20 | 966 | 1.90 | -16.1% | 
| science | 1112 | 249 | 4.47 | 228 | 4.88 | +8.4% | 
| fwe-train | 4208518 | 874799 | 4.81 | 856883 | 4.91 | +2.0% | 
| fwe-val | 4908443 | 1029691 | 4.77 | 1010352 | 4.86 | +1.9% | 
Base model training
timestamp: 2025-10-20 03:02:00
- run: speedrun
 - depth: 20
 - max_seq_len: 2048
 - num_iterations: -1
 - target_flops: -1.0000
 - target_param_data_ratio: 20
 - device_batch_size: 32
 - total_batch_size: 524,288
 - embedding_lr: 0.2000
 - unembedding_lr: 0.0040
 - weight_decay: 0.0000
 - matrix_lr: 0.0200
 - grad_clip: 1.0000
 - eval_every: 250
 - eval_tokens: 10,485,760
 - core_metric_every: 2000
 - core_metric_max_per_task: 500
 - sample_every: 2000
 - model_tag:
 - Number of parameters: 560,988,160
 - Number of FLOPs per token: 3.491758e+09
 - Calculated number of iterations: 21,400
 - Number of training tokens: 11,219,763,200
 - Tokens : Params ratio: 20.0000
 - DDP world size: 8
 - warmup_ratio: 0.0000
 - warmdown_ratio: 0.2000
 - final_lr_frac: 0.0000
 - Minimum validation bpb: 0.8143
 - Final validation bpb: 0.8143
 - CORE metric estimate: 0.2133
 - MFU %: 21.02%
 - Total training flops: 3.917670e+19
 - Total training time: 394.42m
 - Peak memory usage: 75374.27MiB
 
Base model loss
timestamp: 2025-10-20 03:03:28
- train bpb: 0.8171
 - val bpb: 0.8144
 - sample 0: <|bos|>The capital of France is Paris. The capital of France is Paris. The capital of France is Paris.
 - sample 1: <|bos|>The chemical symbol of gold is Au. The chemical symbol of gold is Au. The chemical symbol of gold is
 - sample 2: <|bos|>If yesterday was Friday, then tomorrow will be Friday, and so on. This is a very common way of thinking about the
 - sample 3: <|bos|>The opposite of hot is cold. The opposite of cold is hot. The opposite of hot is cold.
 - sample 4: <|bos|>The planets of the solar system are: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune,
 - sample 5: <|bos|>My favorite color is red. I love it. I love it. I love it. I love
 - sample 6: <|bos|>If 5x + 3 = 13, then x is a multiple of 5. If 5x + 3 =
 
Base model evaluation
timestamp: 2025-10-20 03:10:53
- Model: base_model (step 21400)
 - CORE metric: 0.2084
 - hellaswag_zeroshot: 0.2626
 - jeopardy: 0.1068
 - bigbench_qa_wikidata: 0.5118
 - arc_easy: 0.5325
 - arc_challenge: 0.1274
 - copa: 0.4000
 - commonsense_qa: 0.0274
 - piqa: 0.3645
 - openbook_qa: 0.1200
 - lambada_openai: 0.3813
 - hellaswag: 0.2631
 - winograd: 0.2234
 - winogrande: 0.0545
 - bigbench_dyck_languages: 0.1270
 - agi_eval_lsat_ar: 0.0489
 - bigbench_cs_algorithms: 0.3545
 - bigbench_operators: 0.1429
 - bigbench_repeat_copy_logic: 0.0312
 - squad: 0.2391
 - coqa: 0.2176
 - boolq: -0.1267
 - bigbench_language_identification: 0.1740
 
Midtraining
timestamp: 2025-10-20 03:29:50
- run: speedrun
 - dtype: bfloat16
 - max_seq_len: 2048
 - device_batch_size: 32
 - unembedding_lr: 0.0040
 - embedding_lr: 0.2000
 - matrix_lr: 0.0200
 - init_lr_frac: 1.0000
 - weight_decay: 0.0000
 - eval_every: 150
 - eval_tokens: 10,485,760
 - total_batch_size: 524,288
 - dry_run: 0
 - Number of iterations: 765
 - DDP world size: 8
 - Minimum validation bpb: 0.3963
 
Chat evaluation mid
timestamp: 2025-10-20 03:48:39
- source: mid
 - task_name: None
 - dtype: bfloat16
 - temperature: 0.0000
 - max_new_tokens: 512
 - num_samples: 1
 - top_k: 50
 - batch_size: 8
 - model_tag: None
 - step: None
 - max_problems: None
 - ARC-Easy: 0.3119
 - ARC-Challenge: 0.2927
 - MMLU: 0.2975
 - GSM8K: 0.0402
 - HumanEval: 0.0976
 - ChatCORE metric: 0.0681
 
Chat SFT
timestamp: 2025-10-20 03:53:11
- run: speedrun
 - source: mid
 - dtype: bfloat16
 - device_batch_size: 4
 - num_epochs: 1
 - max_iterations: -1
 - target_examples_per_step: 32
 - unembedding_lr: 0.0040
 - embedding_lr: 0.2000
 - matrix_lr: 0.0200
 - weight_decay: 0.0000
 - init_lr_frac: 0.0200
 - eval_every: 100
 - eval_steps: 100
 - eval_metrics_every: 200
 - Training rows: 20,843
 - Number of iterations: 651
 - Training loss: 1.1234
 - Validation loss: 1.0146
 
Chat evaluation sft
timestamp: 2025-10-20 04:09:28
- source: sft
 - task_name: None
 - dtype: bfloat16
 - temperature: 0.0000
 - max_new_tokens: 512
 - num_samples: 1
 - top_k: 50
 - batch_size: 8
 - model_tag: None
 - step: None
 - max_problems: None
 - ARC-Easy: 0.3338
 - ARC-Challenge: 0.3046
 - MMLU: 0.2955
 - GSM8K: 0.0599
 - HumanEval: 0.1220
 - ChatCORE metric: 0.0854
 
Summary
- Characters: 357,831
 - Lines: 8,718
 - Files: 44
 - Tokens (approx): 89,457
 - Dependencies (uv.lock lines): 2,004
 
| Metric | BASE | MID | SFT | RL | 
|---|---|---|---|---|
| CORE | 0.2084 | - | - | - | 
| ARC-Challenge | - | 0.2927 | 0.3046 | - | 
| ARC-Easy | - | 0.3119 | 0.3338 | - | 
| GSM8K | - | 0.0402 | 0.0599 | - | 
| HumanEval | - | 0.0976 | 0.1220 | - | 
| MMLU | - | 0.2975 | 0.2955 | - | 
| ChatCORE | - | 0.0681 | 0.0854 | - | 
Total wall clock time: 8h14m
	Inference Providers
	NEW
	
	
	This model isn't deployed by any Inference Provider.
	๐
			
		Ask for provider support