|
--- |
|
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png |
|
license: llama3 |
|
datasets: |
|
- mc4 |
|
- wikipedia |
|
- EleutherAI/pile |
|
- oscar-corpus/colossal-oscar-1.0 |
|
- cc100 |
|
language: |
|
- ja |
|
- en |
|
tags: |
|
- llama |
|
- llama-3 |
|
inference: false |
|
base_model: meta-llama/Meta-Llama-3-70B |
|
--- |
|
|
|
# `Llama 3 Youko 70B (rinna/llama-3-youko-70b)` |
|
|
|
 |
|
|
|
# Overview |
|
|
|
We conduct continual pre-training of [meta-llama/Meta-Llama-3-70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B) on **5B** tokens from a mixture of Japanese and English datasets. The continual pre-training significantly improves the model's performance on Japanese tasks. |
|
|
|
The name `youko` comes from the Japanese word [`妖狐/ようこ/Youko`](https://ja.wikipedia.org/wiki/%E5%A6%96%E7%8B%90), which is a kind of Japanese mythical creature ([`妖怪/ようかい/Youkai`](https://ja.wikipedia.org/wiki/%E5%A6%96%E6%80%AA)). |
|
|
|
| Size | Continual Pre-Training | Instruction-Tuning | |
|
| :- | :- | :- | |
|
| 8B | Llama 3 Youko 8B [[HF]](https://huggingface.co/rinna/llama-3-youko-8b) [[GPTQ]](https://huggingface.co/rinna/llama-3-youko-8b-gptq) | Llama 3 Youko 8B Instruct [[HF]](https://huggingface.co/rinna/llama-3-youko-8b-instruct) [[GPTQ]](https://huggingface.co/rinna/llama-3-youko-8b-instruct-gptq) | |
|
| 70B | Llama 3 Youko 70B [[HF]](https://huggingface.co/rinna/llama-3-youko-70b) [[GPTQ]](https://huggingface.co/rinna/llama-3-youko-70b-gptq) | Llama 3 Youko 70B Instruct [[HF]](https://huggingface.co/rinna/llama-3-youko-70b-instruct) [[GPTQ]](https://huggingface.co/rinna/llama-3-youko-70b-instruct-gptq) | |
|
|
|
* **Library** |
|
|
|
The model was trained using code based on [EleutherAI/gpt-neox](https://github.com/EleutherAI/gpt-neox). |
|
|
|
* **Model architecture** |
|
|
|
A 80-layer, 8192-hidden-size transformer-based language model. Refer to the [Llama 3 Model Card](https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md) for architecture details. |
|
|
|
* **Training: Built with Meta Llama 3** |
|
|
|
The model was initialized with the [meta-llama/Meta-Llama-3-70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B) model and continually trained on around **5B** tokens from a mixture of the following corpora |
|
- [Japanese CC-100](https://huggingface.co/datasets/cc100) |
|
- [Japanese C4](https://huggingface.co/datasets/mc4) |
|
- [Japanese OSCAR](https://huggingface.co/datasets/oscar-corpus/colossal-oscar-1.0) |
|
- [The Pile](https://huggingface.co/datasets/EleutherAI/pile) |
|
- [Wikipedia](https://dumps.wikimedia.org/other/cirrussearch) |
|
- rinna curated Japanese dataset |
|
|
|
* **Contributors** |
|
|
|
- [Koh Mitsuda](https://huggingface.co/mitsu-koh) |
|
- [Xinqi Chen](https://huggingface.co/Keely0419) |
|
- [Toshiaki Wakatsuki](https://huggingface.co/t-w) |
|
- [Kei Sawada](https://huggingface.co/keisawada) |
|
|
|
* **Release date** |
|
|
|
July 25, 2024 |
|
|
|
--- |
|
|
|
# Benchmarking |
|
|
|
Please refer to [rinna's LM benchmark page (Sheet 20240725)](https://rinnakk.github.io/research/benchmarks/lm/index.html). |
|
|
|
--- |
|
|
|
# How to use the model |
|
|
|
~~~~python |
|
import transformers |
|
import torch |
|
|
|
model_id = "rinna/llama-3-youko-70b" |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model_id, |
|
model_kwargs={"torch_dtype": torch.bfloat16}, |
|
device_map="auto" |
|
) |
|
output = pipeline( |
|
"西田幾多郎は、", |
|
max_new_tokens=256, |
|
do_sample=True |
|
) |
|
print(output[0]["generated_text"]) |
|
~~~~ |
|
|
|
--- |
|
|
|
# Tokenization |
|
The model uses the original [meta-llama/Meta-Llama-3-70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B) tokenizer. |
|
|
|
--- |
|
|
|
# How to cite |
|
```bibtex |
|
@misc{rinna-llama-3-youko-70b, |
|
title = {rinna/llama-3-youko-70b}, |
|
author = {Mitsuda, Koh and Chen, Xinqi and Wakatsuki, Toshiaki and Sawada, Kei}, |
|
url = {https://huggingface.co/rinna/llama-3-youko-70b} |
|
} |
|
|
|
@inproceedings{sawada2024release, |
|
title = {Release of Pre-Trained Models for the {J}apanese Language}, |
|
author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh}, |
|
booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)}, |
|
month = {5}, |
|
year = {2024}, |
|
pages = {13898--13905}, |
|
url = {https://aclanthology.org/2024.lrec-main.1213}, |
|
note = {\url{https://arxiv.org/abs/2404.01657}} |
|
} |
|
``` |
|
--- |
|
|
|
# References |
|
```bibtex |
|
@article{llama3modelcard, |
|
title = {Llama 3 Model Card}, |
|
author = {AI@Meta}, |
|
year = {2024}, |
|
url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md} |
|
} |
|
|
|
@software{gpt-neox-library, |
|
title = {{GPT}-{N}eo{X}: Large Scale Autoregressive Language Modeling in {P}y{T}orch}, |
|
author = {Andonian, Alex and Anthony, Quentin and Biderman, Stella and Black, Sid and Gali, Preetham and Gao, Leo and Hallahan, Eric and Levy-Kramer, Josh and Leahy, Connor and Nestler, Lucas and Parker, Kip and Pieler, Michael and Purohit, Shivanshu and Songz, Tri and Phil, Wang and Weinbach, Samuel}, |
|
doi = {10.5281/zenodo.5879544}, |
|
month = {8}, |
|
year = {2021}, |
|
version = {0.0.1}, |
|
url = {https://www.github.com/eleutherai/gpt-neox} |
|
} |
|
``` |
|
--- |
|
|
|
# License |
|
[Meta Llama 3 Community License](https://llama.meta.com/llama3/license/) |