llama-3-youko-70b / README.md
keisawada's picture
Update README.md
1bf383a verified
|
raw
history blame
5.31 kB
---
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
license: llama3
datasets:
- mc4
- wikipedia
- EleutherAI/pile
- oscar-corpus/colossal-oscar-1.0
- cc100
language:
- ja
- en
tags:
- llama
- llama-3
inference: false
base_model: meta-llama/Meta-Llama-3-70B
---
# `Llama 3 Youko 70B (rinna/llama-3-youko-70b)`
![rinna-icon](./rinna.png)
# Overview
We conduct continual pre-training of [meta-llama/Meta-Llama-3-70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B) on **5B** tokens from a mixture of Japanese and English datasets. The continual pre-training significantly improves the model's performance on Japanese tasks.
The name `youko` comes from the Japanese word [`妖狐/ようこ/Youko`](https://ja.wikipedia.org/wiki/%E5%A6%96%E7%8B%90), which is a kind of Japanese mythical creature ([`妖怪/ようかい/Youkai`](https://ja.wikipedia.org/wiki/%E5%A6%96%E6%80%AA)).
| Size | Continual Pre-Training | Instruction-Tuning |
| :- | :- | :- |
| 8B | Llama 3 Youko 8B [[HF]](https://huggingface.co/rinna/llama-3-youko-8b) [[GPTQ]](https://huggingface.co/rinna/llama-3-youko-8b-gptq) | Llama 3 Youko 8B Instruct [[HF]](https://huggingface.co/rinna/llama-3-youko-8b-instruct) [[GPTQ]](https://huggingface.co/rinna/llama-3-youko-8b-instruct-gptq) |
| 70B | Llama 3 Youko 70B [[HF]](https://huggingface.co/rinna/llama-3-youko-70b) [[GPTQ]](https://huggingface.co/rinna/llama-3-youko-70b-gptq) | Llama 3 Youko 70B Instruct [[HF]](https://huggingface.co/rinna/llama-3-youko-70b-instruct) [[GPTQ]](https://huggingface.co/rinna/llama-3-youko-70b-instruct-gptq) |
* **Library**
The model was trained using code based on [EleutherAI/gpt-neox](https://github.com/EleutherAI/gpt-neox).
* **Model architecture**
A 80-layer, 8192-hidden-size transformer-based language model. Refer to the [Llama 3 Model Card](https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md) for architecture details.
* **Training: Built with Meta Llama 3**
The model was initialized with the [meta-llama/Meta-Llama-3-70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B) model and continually trained on around **5B** tokens from a mixture of the following corpora
- [Japanese CC-100](https://huggingface.co/datasets/cc100)
- [Japanese C4](https://huggingface.co/datasets/mc4)
- [Japanese OSCAR](https://huggingface.co/datasets/oscar-corpus/colossal-oscar-1.0)
- [The Pile](https://huggingface.co/datasets/EleutherAI/pile)
- [Wikipedia](https://dumps.wikimedia.org/other/cirrussearch)
- rinna curated Japanese dataset
* **Contributors**
- [Koh Mitsuda](https://huggingface.co/mitsu-koh)
- [Xinqi Chen](https://huggingface.co/Keely0419)
- [Toshiaki Wakatsuki](https://huggingface.co/t-w)
- [Kei Sawada](https://huggingface.co/keisawada)
* **Release date**
July 25, 2024
---
# Benchmarking
Please refer to [rinna's LM benchmark page (Sheet 20240725)](https://rinnakk.github.io/research/benchmarks/lm/index.html).
---
# How to use the model
~~~~python
import transformers
import torch
model_id = "rinna/llama-3-youko-70b"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto"
)
output = pipeline(
"西田幾多郎は、",
max_new_tokens=256,
do_sample=True
)
print(output[0]["generated_text"])
~~~~
---
# Tokenization
The model uses the original [meta-llama/Meta-Llama-3-70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B) tokenizer.
---
# How to cite
```bibtex
@misc{rinna-llama-3-youko-70b,
title = {rinna/llama-3-youko-70b},
author = {Mitsuda, Koh and Chen, Xinqi and Wakatsuki, Toshiaki and Sawada, Kei},
url = {https://huggingface.co/rinna/llama-3-youko-70b}
}
@inproceedings{sawada2024release,
title = {Release of Pre-Trained Models for the {J}apanese Language},
author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh},
booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
month = {5},
year = {2024},
pages = {13898--13905},
url = {https://aclanthology.org/2024.lrec-main.1213},
note = {\url{https://arxiv.org/abs/2404.01657}}
}
```
---
# References
```bibtex
@article{llama3modelcard,
title = {Llama 3 Model Card},
author = {AI@Meta},
year = {2024},
url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}
@software{gpt-neox-library,
title = {{GPT}-{N}eo{X}: Large Scale Autoregressive Language Modeling in {P}y{T}orch},
author = {Andonian, Alex and Anthony, Quentin and Biderman, Stella and Black, Sid and Gali, Preetham and Gao, Leo and Hallahan, Eric and Levy-Kramer, Josh and Leahy, Connor and Nestler, Lucas and Parker, Kip and Pieler, Michael and Purohit, Shivanshu and Songz, Tri and Phil, Wang and Weinbach, Samuel},
doi = {10.5281/zenodo.5879544},
month = {8},
year = {2021},
version = {0.0.1},
url = {https://www.github.com/eleutherai/gpt-neox}
}
```
---
# License
[Meta Llama 3 Community License](https://llama.meta.com/llama3/license/)