|  | --- | 
					
						
						|  | license: apache-2.0 | 
					
						
						|  | tags: | 
					
						
						|  | - generated_from_trainer | 
					
						
						|  | metrics: | 
					
						
						|  | - wer | 
					
						
						|  | model-index: | 
					
						
						|  | - name: openai/whisper-medium.en | 
					
						
						|  | results: | 
					
						
						|  | - task: | 
					
						
						|  | type: automatic-speech-recognition | 
					
						
						|  | name: Automatic Speech Recognition | 
					
						
						|  | dataset: | 
					
						
						|  | name: rishabhjain16/infer_myst | 
					
						
						|  | type: rishabhjain16/infer_myst | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | metrics: | 
					
						
						|  | - type: wer | 
					
						
						|  | value: 12.1 | 
					
						
						|  | name: WER | 
					
						
						|  | - task: | 
					
						
						|  | type: automatic-speech-recognition | 
					
						
						|  | name: Automatic Speech Recognition | 
					
						
						|  | dataset: | 
					
						
						|  | name: rishabhjain16/infer_pfs | 
					
						
						|  | type: rishabhjain16/infer_pfs | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | metrics: | 
					
						
						|  | - type: wer | 
					
						
						|  | value: 31.29 | 
					
						
						|  | name: WER | 
					
						
						|  | - task: | 
					
						
						|  | type: automatic-speech-recognition | 
					
						
						|  | name: Automatic Speech Recognition | 
					
						
						|  | dataset: | 
					
						
						|  | name: rishabhjain16/infer_cmu | 
					
						
						|  | type: rishabhjain16/infer_cmu | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | metrics: | 
					
						
						|  | - type: wer | 
					
						
						|  | value: 2.27 | 
					
						
						|  | name: WER | 
					
						
						|  | - task: | 
					
						
						|  | type: automatic-speech-recognition | 
					
						
						|  | name: Automatic Speech Recognition | 
					
						
						|  | dataset: | 
					
						
						|  | name: rishabhjain16/infer_pf_italian | 
					
						
						|  | type: rishabhjain16/infer_pf_italian | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | metrics: | 
					
						
						|  | - type: wer | 
					
						
						|  | value: 77.38 | 
					
						
						|  | name: WER | 
					
						
						|  | - task: | 
					
						
						|  | type: automatic-speech-recognition | 
					
						
						|  | name: Automatic Speech Recognition | 
					
						
						|  | dataset: | 
					
						
						|  | name: rishabhjain16/infer_pf_german | 
					
						
						|  | type: rishabhjain16/infer_pf_german | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | metrics: | 
					
						
						|  | - type: wer | 
					
						
						|  | value: 125.37 | 
					
						
						|  | name: WER | 
					
						
						|  | - task: | 
					
						
						|  | type: automatic-speech-recognition | 
					
						
						|  | name: Automatic Speech Recognition | 
					
						
						|  | dataset: | 
					
						
						|  | name: rishabhjain16/infer_pf_swedish | 
					
						
						|  | type: rishabhjain16/infer_pf_swedish | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | metrics: | 
					
						
						|  | - type: wer | 
					
						
						|  | value: 138.95 | 
					
						
						|  | name: WER | 
					
						
						|  | - task: | 
					
						
						|  | type: automatic-speech-recognition | 
					
						
						|  | name: Automatic Speech Recognition | 
					
						
						|  | dataset: | 
					
						
						|  | name: rishabhjain16/infer_so_chinese | 
					
						
						|  | type: rishabhjain16/infer_so_chinese | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | metrics: | 
					
						
						|  | - type: wer | 
					
						
						|  | value: 33.32 | 
					
						
						|  | name: WER | 
					
						
						|  | - task: | 
					
						
						|  | type: automatic-speech-recognition | 
					
						
						|  | name: Automatic Speech Recognition | 
					
						
						|  | dataset: | 
					
						
						|  | name: rishabhjain16/libritts_dev_clean | 
					
						
						|  | type: rishabhjain16/libritts_dev_clean | 
					
						
						|  | config: en | 
					
						
						|  | split: test | 
					
						
						|  | metrics: | 
					
						
						|  | - type: wer | 
					
						
						|  | value: 6.13 | 
					
						
						|  | name: WER | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | <!-- This model card has been generated automatically according to the information the Trainer had access to. You | 
					
						
						|  | should probably proofread and complete it, then remove this comment. --> | 
					
						
						|  |  | 
					
						
						|  | # openai/whisper-medium.en | 
					
						
						|  |  | 
					
						
						|  | This model is a fine-tuned version of [openai/whisper-medium.en](https://huggingface.co/openai/whisper-medium.en) on the None dataset. | 
					
						
						|  | It achieves the following results on the evaluation set: | 
					
						
						|  | - Loss: 0.3763 | 
					
						
						|  | - Wer: 11.2832 | 
					
						
						|  |  | 
					
						
						|  | ## Model description | 
					
						
						|  |  | 
					
						
						|  | More information needed | 
					
						
						|  |  | 
					
						
						|  | ## Intended uses & limitations | 
					
						
						|  |  | 
					
						
						|  | More information needed | 
					
						
						|  |  | 
					
						
						|  | ## Training and evaluation data | 
					
						
						|  |  | 
					
						
						|  | More information needed | 
					
						
						|  |  | 
					
						
						|  | ## Training procedure | 
					
						
						|  |  | 
					
						
						|  | ### Training hyperparameters | 
					
						
						|  |  | 
					
						
						|  | The following hyperparameters were used during training: | 
					
						
						|  | - learning_rate: 1e-05 | 
					
						
						|  | - train_batch_size: 32 | 
					
						
						|  | - eval_batch_size: 32 | 
					
						
						|  | - seed: 42 | 
					
						
						|  | - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | 
					
						
						|  | - lr_scheduler_type: linear | 
					
						
						|  | - lr_scheduler_warmup_steps: 500 | 
					
						
						|  | - training_steps: 4000 | 
					
						
						|  | - mixed_precision_training: Native AMP | 
					
						
						|  |  | 
					
						
						|  | ### Training results | 
					
						
						|  |  | 
					
						
						|  | | Training Loss | Epoch | Step | Validation Loss | Wer     | | 
					
						
						|  | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 
					
						
						|  | | 0.2381        | 0.12  | 500  | 0.2625          | 11.4877 | | 
					
						
						|  | | 0.1332        | 1.1   | 1000 | 0.2451          | 11.4078 | | 
					
						
						|  | | 0.1097        | 2.08  | 1500 | 0.2610          | 11.5359 | | 
					
						
						|  | | 0.0412        | 3.06  | 2000 | 0.2804          | 10.9598 | | 
					
						
						|  | | 0.0219        | 4.04  | 2500 | 0.3426          | 10.9669 | | 
					
						
						|  | | 0.0139        | 5.02  | 3000 | 0.3503          | 11.3325 | | 
					
						
						|  | | 0.0086        | 6.0   | 3500 | 0.3761          | 11.0222 | | 
					
						
						|  | | 0.0017        | 6.13  | 4000 | 0.3763          | 11.2832 | | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ### Framework versions | 
					
						
						|  |  | 
					
						
						|  | - Transformers 4.27.0.dev0 | 
					
						
						|  | - Pytorch 1.13.1+cu117 | 
					
						
						|  | - Datasets 2.9.1.dev0 | 
					
						
						|  | - Tokenizers 0.13.2 | 
					
						
						|  |  |