rishabhjain16's picture
Update metadata with huggingface_hub
e4b732e
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: openai/whisper-small.en
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: rishabhjain16/infer_myst
          type: rishabhjain16/infer_myst
          config: en
          split: test
        metrics:
          - type: wer
            value: 13.43
            name: WER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: rishabhjain16/infer_pfs
          type: rishabhjain16/infer_pfs
          config: en
          split: test
        metrics:
          - type: wer
            value: 3.39
            name: WER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: rishabhjain16/infer_cmu_9h
          type: rishabhjain16/infer_cmu_9h
          config: en
          split: test
        metrics:
          - type: wer
            value: 15.54
            name: WER

openai/whisper-small.en

This model is a fine-tuned version of openai/whisper-small.en on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3955
  • Wer: 11.3610

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2871 0.12 500 0.3313 12.0452
0.2339 1.11 1000 0.3023 12.9337
0.2437 2.1 1500 0.3038 12.7260
0.0485 3.09 2000 0.3246 11.1822
0.0834 4.07 2500 0.3510 11.8941
0.1024 5.06 3000 0.3645 11.6309
0.0208 6.05 3500 0.4008 10.8457
0.0328 7.03 4000 0.3955 11.3610

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.9.1.dev0
  • Tokenizers 0.13.2